• Title/Summary/Keyword: Satellite antenna

Search Result 616, Processing Time 0.033 seconds

Performance Analysis of Spatial Adaptive Null Pattern Control Algorithm for 5 Elements Array Antenna (5소자 배열안테나의 공간 적응 널패턴 제어 알고리즘 성능분석)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.313-319
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. One of the best method to overcome this disadvantage is to use an adaptive array antenna which has the capability of beamforming or nulling to the certain direction. In this paper, the performance of spatial adaptive null pattern control algorithm of 5 element array antenna is analyzed. A control algorithm which is designed in the 5 element array antenna is OPM(Output Power Minimization) which is eliminating the correlation characteristics between a reference antenna and the others. This algorithm can be applied effectively to the satellite navigation's CRPA because the satellite direction is not considered and GNSS signal power is below the thermal noise. The feature of the OPM algorithm is analyzed and the performance is compared with other null pattern control algorithm.

Antenna Alignment Method for Low Angular Error of 3-axis Tracking System

  • Lee, Jeom Hun;Kim, Young Wan;Kim, Nae Soo;Lee, Ho Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • This paper describes the antenna alignment method of the tracking antenna system for LEO satellite. The purpose of the antenna alignment is to reduce the angular error due to the structural alignment and the monopulse null point alignment error. The angular error of 3 axis tracking system is the key performance parameter that should be minimized to accurately track satellite movement. The angular error is analyzed via a simulation and boresight measurement. The simulation is done with formulas to be derived from vector concept for 3-axis movement. The formulas of the structural alignment are verified by comparing the formula result with the field measurement. Also, the angular error due to monopulse null shift is obtained via boresight measurement. Based on the analyzed and measured results, the antenna alignment was performed and was verified via tracking test of operating LEO satellite.

  • PDF

Development of an integrated amplifier for MATV/Satellite Broadcasting (SMATV를 위한 MATV/위성 방송 통합형 증폭기 개발에 관한 연구)

  • Lee, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5007-5014
    • /
    • 2010
  • Recently n Korea, the House of Commons and terrestrial broadcasting facilities integrated with FM radio and the satellite compulsory was amended to transfer MATV(Master Antenna Television) adjusted by SMATV(Satellite Master Antenna Television). While the SMATV was accepted by default in most other countries, our county did not accept it as the default for broadcast. Because domestic cable and satellite television service providers are conflicts with their interest. bAs a result, the hybrid amplifier for SMATV technology development and volume production for the state is insufficient. Therefore, terrestrial television broadcast bands (54 ~ 806Mhz) and FM radio broadcast band (88 ~ 108Mhz) band satellite with (950 ~ 2150Mhz) to amplify the development of a broadband amplifier with subsequent resolution of problems is also presented in this study.

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Thermal Analysis of Composite Satellite Antenna Structure in Space Environment (복합재 통신위성 안테나의 우주환경 열해석)

  • ;;;;Frank Gilles
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.77-80
    • /
    • 2002
  • Thermal analysis has been performed to evaluate the thermal effect on composite antenna (Ka-band) structure in space environment. The concepts of thermal control are also presented to maintain the antenna components within respective temperature limits. A steady-state algorithm of I-DEAS' thermal analysis software was utilized to predict both maximum and minimum temperature, maximum gradient temperature, and temperature distribution on each antenna component.

  • PDF

Design Analysis of GPS Satellite Receiver Antenna using FDTD Method (FDTD법을 이용한 GPS 위성 수신 안테나의 설계 해석)

  • 최희주;진태훈
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.145-148
    • /
    • 1998
  • In this paper, a microstrip antenna is designed using a rectangular patch. To find characteristics of the antenna, computer simulations of the rectangular single microstrip patch antenna are performed with changing width. And we compared the result of computer simulation with the experimental value. Through the results, we found that the 3-D FDTD method is an effective method for designing microstrip patch antenna. According to simulation the resonant point has been found it in the frequency received from GPS satellite. It is thought that make it match by adjusting the feedpoint.

  • PDF

A Geometric Compression Method Using Dominant Points for Transmission to LEO Satellites

  • Ko, Kwang Hee;Ahn, Hyo-Sung;Wang, Semyung;Choi, Sujin;Jung, Okchul;Chung, Daewon;Park, Hyungjun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.622-630
    • /
    • 2016
  • In the operation of a low earth orbit satellite, a series of antenna commands are transmitted from a ground station to the satellite within a visibility window (i.e., the time period for which an antenna of the satellite is visible from the station) and executed to control the antenna. The window is a limited resource where all data transmission is carried out. Therefore, minimizing the transmission time for the antenna commands by reducing the data size is necessary in order to provide more time for the transmission of other data. In this paper, we propose a geometric compression method based on B-spline curve fitting using dominant points in order to compactly represent the antenna commands. We transform the problem of command size reduction into a geometric problem that is relatively easier to deal with. The command data are interpreted as points in a 2D space. The geometric properties of the data distribution are considered to determine the optimal parameters for a curve approximating the data with sufficient accuracy. Experimental results demonstrate that the proposed method is superior to conventional methods currently used in practice.

ANTENNA POINTING TO THE GEO SATELLITE USING CONVERTED NORAD TLE FROM OSCULATING ORBITAL ELEMENTS (접촉궤도요소로부터 변환된 NORAD TLE를 이용한 정지위성의 안테나 포인팅)

  • Lee, Byoung-Sun;Kim, Hae-Yeon;Hwang, Yoo-La;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • Antenna pointing analysis for a geostationary satellite has been performed for using the NORAD Two-Line-Elements (TLE) converted from osculating Keplerian orbital elements. In order to check the possibility of the reception of the satellite signal, the antenna offset angles have been derived for the Communications, Ocean, and Meteorological Satellite (COMS) which carries out weekly East-West and North-South station-keeping maneuvers and twice a day thruster assisted momentum dumping. Throughout the analysis, it is shown that the use of converted NORAD TLE simplifies the antenna pointing related interfaces in satellite mission control system. For a highly eccentric transfer orbit cases, further analysis presents that the converted NORAD TLE from near apogee gives more favorable results.

A Study on The Measurement and Compensation of Satellite Deflection (위성의 처짐 측정 및 보상에 관한 연구)

  • Moon, Hong-Youl;Kim, Jin-Hee;Woo, Sung-Hyun;Cho, Chang-Lae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • Satellites are generally put in horizontal configuration to install a weighty, large and deploying SAR antenna which is required precise alignment. It is not to damage an antenna deployment mechanism from impellent strength as SAR antenna rotation axis is aligned with the gravity axis and SAR antenna is put in a zero gravity condition. In order to install such a deploying antenna, satellite should be a same condition of the vertical configuration without the deflection of satellite when it is rotated horizontally. In this paper, it is shown how to measure the deflection of satellite and how to get a reaction force value for compensating the deflection.

  • PDF

Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

  • C.V.R Subbaraya Sastry;G.S Narayan Rao;N Ramakrishna;V.K Hariharan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.94-100
    • /
    • 2023
  • The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.