• Title/Summary/Keyword: Satellite Signals

Search Result 502, Processing Time 0.02 seconds

A Novel Scheme for Code Tracking Bias Mitigation in Band-Limited Global Navigation Satellite Systems (위성 기반 측위 시스템에서의 부호 추적편이 완화 기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iich-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1032-1041
    • /
    • 2007
  • The global navigation satellite system (GNSS), which is the core technique for the location based service, adopts the direct sequence/spread spectrum (DS/SS) as its modulation method. The success of a DS/SS system depends on the synchronization between the received and locally generated pseudo noise (PN) signals. As a step in the synchronization process, the tacking scheme performs fine adjustment to bring the phase difference between the two PN signals to zero. The most widely used tracking scheme is the delay locked loop with early minus late discriminator (EL-DLL). In the ideal case, the EL-DLL is the best estimator among various DLL. However, in the band-limited multipath environment, the EL-DLL has tracking bias. In this paper, the timing offset range of correlation function is divided into advanced offset range (AOR) and delayed offset range (DOR) centering around the correct synchronization time point. The tracking bias results from the following two reasons: symmetry distortion between correlation values in AOR and DOR, and mismatch between the time point corresponding to the maximum correlation value and the synchronization time point. The former and latter are named as the type I and type II tracking bias, respectively. In this paper, when the receiver has finite bandwidth in the presence of multipath signals, it is shown that the type II tracking bias becomes a more dominant error factor than the type I tracking bias, and the correlation values in AOR are not almost changed. Exploiting these characteristics, we propose a novel tracking bias mitigation scheme and demonstrate that the tracking accuracy of the proposed scheme is higher than that of the conventional scheme, both in the presence and absence of noise.

Precision Orbit Propagator for Low Earth Orbiters (저궤도 위성용 정밀궤도 계산모델 개발)

  • Kim, Jeong-Rae;Noh, Jeong-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.900-909
    • /
    • 2012
  • Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

Performance Analysis of a Vector DLL Based GPS Receiver

  • Lim, Deok Won;Choi, Heon Ho;Lee, Sang Jeong;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • For a Global Positioning System (GPS) receiver, it is known that a Vector Delay Locked Loop (DLL) in which the code signals of each satellite are tracked in parallel by using navigation results shows better performance in the aspect of the tracking accuracy and the robustness than that of a Scalar DLL. However, the quantitative analysis and the logical grounds for that performance enhancement of the Vector DLL are not sufficient. This paper, therefore, proposes the structure of the GPS receiver with the Vector DLL and analyzes the performance of it. The tracking and the positioning accuracy of the Vector DLL are theoretically analyzed and confirmed by simulation results. From the simulation results, it can be seen that the tracking and positioning accuracy has been improved about 30% in case that the receiver is static and the positioning is conducted for every Pre-detection Integration Time (PIT) while C/N0 is 45 dB-Hz.

A Preliminary Study of Korean Dual-Frequency SBAS

  • Yun, Ho;Han, Deokhwa;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • A Satellite Based Augmentation System (SBAS) is a representative differential GNSS system, which is used for the navigation performance improvement of Global Navigation Satellite System (GNSS) users. SBAS has been developed focusing on the securement of user integrity so that it can be used for the navigation in aviation fields. Accordingly, the development of SBAS has been completed, and it has been actively used in the United States, Europe, and Japan. As the new satellite of Global Positioning System (GPS) recently started to broadcast new civil signals (L5 frequency), the methods for improving user navigation performance in SBAS using this signal have also been studied. In Korea, to keep pace with these circumstances, full-scale SBAS development is expected to start in 2014, and studies on dual-frequency SBAS using L1/L5 frequencies will also be performed. In this study, before the full-scale development of dual-frequency SBAS in Korea, a simulation was performed to predict the performance and analyze the expected effects.

PERFORMANCE & AMBIGUITY OF RANGE MEASUREMENT FOR COMS (통신해양기상위성의 위성 거리 측정 모호성 및 성능 분석)

  • Ahn, Sang-Il;Park, Dong-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.409-416
    • /
    • 2007
  • The ambiguity and performance of range measurement for COMS using tone standard was analyzed with assuming that satellite is operating at transfer-station and on-station. From the results of analysis, it was shown that the ambiguity was reduced when low frequency ratio between tone signals and large number of minor tones are applied. It was also found that using the narrow noise bandwidth leads to decrease the ambiguity. As a result, required performance of range measurement for COMS can be satisfied when the noise bandwidth is set as 2Hz for transfer-station and 1Hz for on-station, respectively.

Analysis of Rain Effect on the Satellite Signal in Changwon-Masan('88~'97) (창원-마산지역에서 위성신호에 대한 강우의 영향 분석 ('88~'97))

  • 하연철;고봉진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.779-785
    • /
    • 1999
  • The satellite signals have attenuation when Satellite path have rain. The signal attenuation by rain is effected over 100Hz and higher frequency signal have very serious attenuation. The rain attenuation is due mostly to rain rate and rain rate data over 10 years need to estimate characteristics of distribution of ram rate. In this paper, We have obtained the rain characteristics from on the recent data(1988-1997) for Changwon-Masan approximated with Moupfouma New Model, and then estimated the rain attenuation using ITU-R, Global and SAM methods, and finally, Effect of rain was analyzed.

  • PDF

Ground station Baseband Controller(GBC) Development of STSAT-2 (과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발)

  • Oh Dae-Soo;Oh Seung-Han;Park Hong-Young;Kim Kyung-Hee;Cha Won-Ho;Lim Chul-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.482-485
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas and count number of received data packets among demodulated audio signals from three antennas and also set data flow path to good-receiving antenna automatically In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and CBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

Performance Analysis of Linear Array Antenna for Anti-jamming GPS Systems (항재밍 GPS 시스템을 위한 선형 어레이 안테나 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, I design a linear array antenna simulator for anti-jamming GPS systems and perform various performance analysis by simulation. First, I generate simulated transmission signals through the analysis of GPS satellite signal structure, and analyze SNR(Signal to Noise power Ratio) performance of linear array antenna according to number of arrays under noise environments. In addition, I analyze the performance of the anti-jamming beam pattern using MMSE(Minimum Mean Square Error) signal processing method, and also analyze the anti-jamming performance considering antenna calibration problem when there are different delays between arrays.

Ground station Baseband Controller(GBC) Development of STSAT-2 (과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발)

  • Oh, Dae-Soo;Oh, Seung-Han;Park, Hong-Young;Kim, Kyung-Hee;Cha, Won-Ho;Lim, Chul-Woo;Ryu, Chang-Wan;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.116-118
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. After launch Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas. and GBC count number of received data packets among demodulated audio signals from three antennas and set data flow path to good-receiving antenna automatically. In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and GBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

  • PDF

Ionospheric TEC Monitoring over Jeju Island using the Chinese BeiDou Satellite Navigation System

  • Choi, Byung-Kyu;Lee, Woo Kyoung;Sohn, Dong-Hyo;Yoo, Sung-Moon;Roh, Kyoung-Min;Joo, Jung-Min;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Chinese BeiDou Satellite Navigation System consists of three kinds of constellations: the geostationary Earth orbit (GEO), the inclined geosynchronous satellite orbit (IGSO), and the medium Earth orbit (MEO). The BeiDou has expanded its service coverage from regional to global. Recently, the BeiDou has been widely used in ionospheric total electron content (TEC) research. In this study, we analyzed the BeiDou signals for ionospheric TEC monitoring over Jeju Island in South Korea. The BeiDou GEO TEC showed a clear pattern of diurnal variations. In addition, we compared the TEC values from the BeiDou GEO, the BeiDou IGSO, GPS, and International GNSS Service (IGS) Global Ionosphere Maps (GIM). There was a difference of about 5 TEC units between the BeiDou GEO and the IGS GIM. This may be due to the altitude difference between the different navigation satellites.