• Title/Summary/Keyword: Satellite Photogrammetry

Search Result 481, Processing Time 0.023 seconds

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV (UAV 기반 TIR 영상의 융합 기법 정확도 평가)

  • Park, Sang Wook;Choi, Seok Keun;Choi, Jae Wan;Lee, Seung Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Thermal infrared images have the characteristic of being able to detect objects that can not be seen with the naked eye and have the advantage of easily obtaining information of inaccessible areas. However, TIR (Thermal InfraRed) images have a relatively low spatial resolution. In this study, the applicability of the pansharpening algorithm used for satellite imagery on images acquired by the UAV (Unmanned Aerial Vehicle) was tested. RGB image have higher spatial resolution than TIR images. In this study, pansharpening algorithm was applied to TIR image to create the images which have similar spatial resolution as RGB images and have temperature information in it. Experimental results show that the pansharpening algorithm using the PC1 band and the average of RGB band shows better results for the quantitative evaluation than the other bands, and it has been confirmed that pansharpening results by ATWT (${\grave{A}}$ Trous Wavelet Transform) exhibit superior spectral resolution and spatial resolution than those by HPF (High-Pass Filter) and SFIM (Smoothing Filter-based Intensity Modulation) pansharpening algorithm.

A Study on the Complementary Method of Aerial Image Learning Dataset Using Cycle Generative Adversarial Network (CycleGAN을 활용한 항공영상 학습 데이터 셋 보완 기법에 관한 연구)

  • Choi, Hyeoung Wook;Lee, Seung Hyeon;Kim, Hyeong Hun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.499-509
    • /
    • 2020
  • This study explores how to build object classification learning data based on artificial intelligence. The data has been investigated recently in image classification fields and, in turn, has a great potential to use. In order to recognize and extract relatively accurate objects using artificial intelligence, a large amount of learning data is required to be used in artificial intelligence algorithms. However, currently, there are not enough datasets for object recognition learning to share and utilize. In addition, generating data requires long hours of work, high expenses and labor. Therefore, in the present study, a small amount of initial aerial image learning data was used in the GAN (Generative Adversarial Network)-based generator network in order to establish image learning data. Moreover, the experiment also evaluated its quality in order to utilize additional learning datasets. The method of oversampling learning data using GAN can complement the amount of learning data, which have a crucial influence on deep learning data. As a result, this method is expected to be effective particularly with insufficient initial datasets.

Comparative evaluation of deep learning-based building extraction techniques using aerial images (항공영상을 이용한 딥러닝 기반 건물객체 추출 기법들의 비교평가)

  • Mo, Jun Sang;Seong, Seon Kyeong;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.157-165
    • /
    • 2021
  • Recently, as the spatial resolution of satellite and aerial images has improved, various studies using remotely sensed data with high spatial resolution have been conducted. In particular, since the building extraction is essential for creating digital thematic maps, high accuracy of building extraction result is required. In this manuscript, building extraction models were generated using SegNet, U-Net, FC-DenseNet, and HRNetV2, which are representative semantic segmentation models in deep learning techniques, and then the evaluation of building extraction results was performed. Training dataset for building extraction were generated by using aerial orthophotos including various buildings, and evaluation was conducted in three areas. First, the model performance was evaluated through the region adjacent to the training dataset. In addition, the applicability of the model was evaluated through the region different from the training dataset. As a result, the f1-score of HRNetV2 represented the best values in terms of model performance and applicability. Through this study, the possibility of creating and modifying the building layer in the digital map was confirmed.

A Study on the Analysis of Crust Deformation on the Korean Peninsula after the Tohoku Earthquake using GNSS Observation (GNSS를 이용한 동일본대지진 이후 한반도 지각변동 해석 연구)

  • Kim, Hee Un;Hwang, Eui-Hong;Lee, HaSeong;Lee, Duk Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.689-696
    • /
    • 2020
  • It is known through prior research that the crust of the Korean Peninsula moves southeast at an annual average of 3 cm/year. The 2011 Great East Japan Earthquake caused a great change in the crust of the Korean Peninsula. Since then, the frequency of earthquakes has increased on the Korean Peninsula. Therefore, by using NGII and IGS GNSS observation data of the recent 15 years, to analyze the trends of changes in the deformation of the Korean Peninsula before and after the outbreak of the Great East Japan Earthquake. Data processing utilized Bernese Software V5.2, a widely used scientific and technical software around the world. As a result, the global movement of the Korean peninsula differed by about 4mm and the direction of movement by about 10° compared to before the Great East Japan Earthquake. As for the internal distortion of the Korean Peninsula, the East-West expansion of the Korean peninsula's crust was observed during the Great East Japan Earthquake, but it is believed that it has not fully returned to the level before the Great East Japan Earthquake.

A Experimental Study on the 3-D Image Restoration Technique of Submerged Area by Chung-ju Dam (충주댐 수몰지구의 3차원 영상복원 기법에 관한 실험적 연구)

  • 연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • It will be a real good news fer the people who were lost their hometown by the construction of a large dam to be restored to the farmer state. Focused on Cheung-pyung around where most part were submerged by the Chungju large Dam founded in eurly 1980s, It used remote sensing image restoration Technique in this study in order to restore topographical features before the flood with stereo effects. We gathered comparatively good satellite photos and remotely sensed digital images, then its made a new fusion image from these various satellite images and the topographical map which had been made before the water filled by the DAM. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as matching current contour lines with the map. That could be a perfect 3D image of test areas around before when it had been water filled by making perspective images from all directions included north, south, east and west, fer showing there in 3 dimensions. Also, for close range visiting made of flying simulation can bring to experience their real space at that time. As a result of this experimental task, it made of new fusion images and 3-D perspective images and simulation live images by remotely sensed photos and images, old paper maps about vanished submerged Dam areas and gained of possibility 3-D terrain image restoration about submerged area by large Dam construction.

Error Budget Analysis for Geolocation Accuracy of High Resolution SAR Satellite Imagery (고해상도 SAR 영상의 기하 위치정확도 관련 중요변수 분석)

  • Hong, Seung Hwan;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.447-454
    • /
    • 2013
  • The geolocation accuracy of SAR satellite imagery is affected by orbit and sensor information and external variables such as DEM accuracy and atmospheric delay. To predict geolocation accuracy of KOMPSAT-5 and KOMPSAT-6, this paper uses TerraSAR-X imagery which has similar spec. Simulation data for sensitivity analysis are generated using range equation and doppler equation with several key error sources. As a result of simulation analysis, the effect of sensor information error is larger than orbit information error. Especially, onboard electronic delay needs to be monitored periodically because this error affects geolocation accuracy of slant range direction by 30m. Additionally, DEM accuracy causes geolocation error by 20~30m in mountainous area and atmospheric delay can occur by 5m in response to atmospheric condition and incidence angle.

Precision Verification of New Global Gravitational Model Using GPS/Leveling Data (GPS/Leveling 자료를 이용한 최신 전지구중력장 모델의 정밀도 검증)

  • Baek, Kyeongmin;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.239-247
    • /
    • 2013
  • The global gravitational model is essential for precision geoid model construction. Also, it would be used as basic scientific data in geophysical and oceanographic fields. In Korea, EGM2008 has been used from the late 2000s. After publishing EGM2008, new gravitational models such as GOCO02S, GOCO03S, EIGEN-6C, EIGEN-6C2 based on GOCE data were developed. Therefore, we need to verify recent models to select optimal one for geoid computation in Korea. In this study, we compared new models generated based on the GOCE data to EGM2008 and verified the precision of models by comparing with NGII(National Geographic Information Institute) GPS/Leveling data. When comparing EIGEN models to EGM2008, the difference is about 8cm. On the other h and, about 70cm of difference between GOCO models and EGM2008 has been calculated. The reason for this is because GOCO models have been developed using only satellite data while EGM2008 has been used gravity and altimeter data as well as satellite data. When comparing global gravitational model to GPS/Leveling data, EGM2008 showed the best precision of 6.1cm over whole Korean peninsula. The new global gravitational model using additional GOCE data will be published consistently, so the precision verification of new model should be continued.

Generation of 3-D City Model using Aerial Imagery (항공사진을 이용한 3차원 도시 모형 생성)

  • Yeu Bock Mo;Jin Kyeong Hyeok;Yoo Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.233-238
    • /
    • 2005
  • 3-D virtual city model is becoming increasingly important for a number of GIS applications. For reconstruction of 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly and most of researches related to 3-D reconstruction focus on development of method for extraction of building height and reconstruction of building. In case of automatically extracting and reconstructing of building height using only aerial images or satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches of integrating optical images and existing digital map (1/1,000) has been in progress. In this paper, we focused on extracting of building height by means of interest points and vertical line locus method for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images (1/5,000) and existing digital map (1/1,000).

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.