• Title/Summary/Keyword: Satellite Observation

Search Result 939, Processing Time 0.034 seconds

Study of Riverline Change around Sannam Wetland in the Hangang River Estuaty using LANDSAT Image Processing (LANDSAT 위성사진을 활용한 한강하구 산남습지 인근 하안선 변화 연구)

  • Youn, Sukzun;Lee, Samhee;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.154-162
    • /
    • 2021
  • The naturally opened Han river estuary is a place where the flows of the Han river, Imjin river, Yaesung river meet with West Sea of Korea, so the hydrodynamic mechanism(Impact-Response) structure of Han river estuary is complex. Continuous observation and measurement due to the morphological characteristics at the estuary are required to maintain the estuary environment and river management facilities. However, the Sannam wetland(the study area) is in the military operation area. Therefore, Sannam wetland has the limited access under the control from military office. In 2020, there had a natural disaster due to flooding in August and COVID-19, and it made a survey hard. The noncontact survey technique, the analysis of LANDSAT images at Sannam wetland, was applied to analyze riverbed fluctuation and morphological transformation around Sannam wetland. LANDSAT images obtained from EarthExplorer, USGS and analyzed by QGIS. The analysis was performed based on the area and the distance near Sannam wetland. As a result, an erosion was happened on the downstream of the study area, and the upstream of the study area did not have any serious sediment transport. Considering the resolution of LANDSAT images, this noncontect survey technique is applicable to manage the study area. From the analysis of LANDSAT images, it is assumed that the tidal effect is greater than the inflow from the upstream. The pattern change of tidal response causes the damage of the river facilities near the Hangang river estuary.

Review of Remote Sensing Applicability for Monitoring Marine Microplastics (해양 미세플라스틱 모니터링을 위한 원격탐사 적용 가능성 검토)

  • Park, Suhyeon;Kim, Changmin;Jeong, Seongwoo;Jang, Seonggan;Kim, Subeen;Ha, Taejung;Han, Kyung-soo;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.835-850
    • /
    • 2022
  • Microplastics have arisen as a worldwide environmental concern, becoming ubiquitous in all marine compartments, and various researches on monitoring marine microplastics are being actively conducted worldwide. Recently, application of a remote detection technology that enables large-scale real-time observation to marine plastic monitoring has been conducted overseas. However, in South Korea, there is little information linking remote detection to marine microplastics and some field studies have demonstrated remote detection of medium- and large-sized marine plastics. This study introduces research cases with remote detection of marine plastics in South Korea and overseas, investigates potential feasibility of using the remote detection technology to marine microplastic monitoring, and suggests some future works to monitor marine microplastics with the remote detection.

A study on the selection of evapotranspiration observatory representative location in Chuncheon Dam basin (증발산량 관측 대표위치 선정에 관한 연구: 춘천댐 유역을 중심으로)

  • Park, Jaegon;Kim, Kiyoung;Lee, Yongjun;Hwag-Bo, Jong Gu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.979-989
    • /
    • 2022
  • In hydrological surveys, observation through representative location is essential due to temporal and spatial limitations and constraints. Regarding the use of hydrological data and the accuracy of the data, there are still insufficient observatories to be used in a specific watershed. In addition, since there is virtually no standard for the location of the current evapotranspiration, this study proposes a method for determining the location of the evapotranspiration. To determining the location of evapotranspiration, a grid is selected in consideration of the operating range of the Flux Tower using the eddy covariance measurement method, which is mainly used to measure evapotranspiration. The grid of representative location was calculated using the factors affecting evapotranspiration and satellite data of evapotranspiration. The grid of representative location was classified as good, fair, and poor. As a result, the number of good grids calculated was 54. It is judged that the classification of the grid has been achieved regarding topography and land use as a characteristic that appeared in the classification of the grid. In particular, in the case of elevation or city area, there was a large deviation, and the calculated good grid was judged to be a group between the two distributions.

Application of a Climate Suitability Model to Assess Spatial Variability in Acreage and Yield of Wheat in Ukraine (우크라이나 밀 재배 면적 및 수량의 공간적 변이 평가를 위한 기후적합도 모델의 활용)

  • Jin Yeong Oh;Shinwoo Hyun;Seungmin Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • It would be advantageous to predict acreage and yield of crops in major grain-exporting countries, which would improve decisions on policy making and grain trade in Korea. A climate suitability model can be used to assess crop acreage and yield in a region where the availability of observation data is limited for the use of process-based crop models. The objective of this study was to determine the climate suitability index of wheat by province in Ukraine, which would allow for the spatial assessment of acreage and yield for the given crop. In the present study, the official data of wheat acreage and yield were collected from the State Statistics Service of Ukraine. The EarthStat data, which is a data product derived from satellite data and official crop reports, were also gathered for the comparison with the map of climate suitability index. The Fuzzy Union model was used to create the climate suitability maps under the historical climate conditions for the period from 1970 to 2000. These maps were compared against actual acreage and yield by province. It was found that the EarthStat data for acreage and yield of wheat differed from the corresponding official data in several provinces. On the other hand, the climate suitability index obtained using the Fuzzy Union model explained the variation in acreage and yield at a reasonable degree. For example, the correlation coefficient between the climate suitability index and yield was 0.647. Our results suggested that the climate suitability index could be used to indicate the spatial distribution of acreage and yield within a region of interest.

An Analysis on the Episodes of Large-scale Transport of Natural Airborne Particles and Anthropogenically Affected Particles from Different Sources in the East Asian Continent in 2008 (2008년 동아시아 대륙으로부터 기원이 다른 먼지와 인위적 오염 입자의 광역적 이동 사례에 대한 분석)

  • Kim, Hak-Sung;Yoon, Ma-Byong;Sohn, Jung-Joo
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.600-607
    • /
    • 2010
  • In 2008, multiple episodes of large-scale transport of natural airborne particles and anthropogenically affected particles from different sources in the East Asian continent were identified in the National Oceanic and Atmospheric Administration (NOAA) satellite RGB-composite images and the mass concentrations of ground level particulate matters. To analyze the aerosol size distribution during the large-scale transport of atmospheric aerosols, both aerosol optical depth (AOD; proportional to the aerosol total loading in the vertical column) and fine aerosol weighting (FW; fractional contribution of fine aerosol to the total AOD) of Moderate resolution Imaging Spectroradiometer (MODIS) aerosol products were used over the East Asian region. The six episodes of massive natural airborne particles were observed at Cheongwon, originating from sandstorms in northern China, Mongolia and the loess plateau of China. The $PM_{10}$ and $PM_{2.5}$ stood at 70% and 16% of the total mass concentration of TSP, respectively. However, the mass concentration of $PM_{2.5}$ among TSP increased as high as 23% in the episode in which they were flowing in by way f the industrial area in east China. In the other five episodes of anthropogenically affected particles that flowed into the Korean Peninsula from east China, the mass concentrations of $PM_{10}$ and $PM_{2.5}$ among TSP reached 82% and 65%, respectively. The average AOD for the large-scale transport of anthropogenically affected particle episodes in the East Asian region was measured at $0.42{\pm}0.17$ compared with AOD ($0.36{\pm}0.13$) for the natural airborne particle episodes. Particularly, the regions covering east China, the Yellow Sea, the Korean Peninsula, and the east Korean sea were characterized by high levels of AOD. The average FW values observed during the event of anthropogenically affected aerosols ($0.63{\pm}0.16$) were moderately higher than those of natural airborne particles ($0.52{\pm}0.13$). This observation suggests that anthropogenically affected particles contribute greatly to the atmospheric aerosols in East Asia.

Study on the Current Status Analysis of Urban Green Spaces in Seoul Focusing on Elementary School Surroundings - Remote Sensing Based Vegetation Classification - (초등학교 주변을 중심으로 본 서울시 도시녹지 현황 분석 및 고찰 - 원격탐사 방법을 이용한 식생분류 -)

  • Kim, Hyun-Ok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.8-18
    • /
    • 2012
  • Urban nature plays an important role not only in the improvement of the physical environment but also from the perspective of psychological and social function. In particular, schoolyards as well as the green spaces near school surroundings function as a primary space for urban children to experience nature in Korea, as they spend most of their time at school. In this study, the status of urban green spaces near school surroundings was examined. For the analysis, 185 elementary schools in Seoul were selected and the green spaces within a radius of 300m(defined as 'school zone' in this study) were analyzed using the Rapid Eye multispectral satellite image data. The mean green space ratio of school zone accounts to about 21% with a high variation from 74% to 0.7% and more than half of the school zone have a green space ratio of less than 20%. Schools with a high green space ratio in their school zone are mostly located near urban forests, so forest areas particularly contribute to increase the green space ratio. Furthermore, forest vegetation shows relatively higher vitality than other green spaces located in urbanized areas. In contrast, schools with a low green space ratio in their school zone are mostly situated in high-density residential areas and the green spaces show relatively low vegetation vitality. Except for the urban forest, the majority of urban green spaces in urbanized areas are landscape green facilities in apartment districts. The other types of urban open spaces such as environmentally shaped schoolyards or street parks account only for a very small proportion of school surroundings. Therefore, it is needed to establish countermeasures in the context of urban planning; e.g. to promote the school forest projects preferentially by selecting schools with a extremely low green space ratio in their school zone, to foster roof greening in near surroundings, and to connect schoolyards organically with nearby apartment landscape green facilities as an easily accessible urban open space.

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Characteristics of Brightness Temperature of Geostationary Satellite on Lightning Events during Summer over South Korea (여름철 낙뢰 발생 시 정지궤도 위성의 휘도온도 특성)

  • Lee, Yun-Jeong;Suh, Myoung-Seok;Eom, Hyo-Sik;Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.744-758
    • /
    • 2009
  • The characteristics of brightness temperature (BT) of infrared and water vapor channels from MTSAT-1R have been investigated using 12 persistent and frequent lightning cases selected from the summer lightnings of 2006-2008. The infrared (IR1, 10.3-11.3 ${\mu}M$) and water vapor (WV, 6.5-7.0 ${\mu}M$) channels from the MTSAT-1R and the lightning observation data from Korea Meteorological Administration are used. When there is no lightning, the BTs of the IR1 and WV channels show the largest frequency at around 290-295K and 245K, respectively. On the other hand, the BTs of two channels show the largest frequency at 215K caused by strong convection when there is lightning. As a result, the WV-IR1 difference (BTDWI) sharply increases from -50K to 0K. Although it depends on the evolution stage of thunderstorms, the lightning mainly occurs at the core of circular convection in the mesoscale convective complex (MCC), whereas the lightning occurs by concentrated line-shape in the squall line. A strong positive correlation exists between the lightning frequency and the BT in the MCC regardless of the BT, but only at the very cold BT in the squall line. In general, the characteristics of BT are well defined for the lightning occurring in the concentrated line, but they are not well defined in the MCC, especially during the decaying stage of MCC. When they are defined well, the lightning occurs when the BTs of IR1 and WV are lower than 215K, BTDWI is near -3 to 1K, and local standard deviation of IR1 decreases to around 1K.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.