• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.028 seconds

A Study of UWB Placement Optimization Based on Genetic Algorithm

  • Jung, Doyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.99-107
    • /
    • 2022
  • Urban Air Mobility (UAM) such as a drone taxi is one of the future transportations that have recently been attracting attention. Along with the construction of an urban terminal, an accurate landing system for UAM is also essential. However, in urban environments, reliable Global Navigation Satellite Systems (GNSS) signals cannot be received due to obstacles such as high-rise buildings which causes multipath and non-line of sight signal. Thus, the positioning result in urban environments from the GNSS signal is unreliable. Consequently, we propose the Ultra-Wideband (UWB) network to assist the soft landing of UAM on a vertiport. Since the positioning performance of UWB network depends on the layout of UWB anchors, it is necessary to optimize the layout of UWB anchors. In this paper, we propose a two-steps genetic algorithm that consists of binary genetic algorithm involved multi objectives fitness function and integer genetic algorithm involved robust solution searching fitness function in order to optimize taking into account Fresnel hole effects.

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

  • Sanghyun Kim;Seunghyeon Park;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

A Survey on Vision-based Localization and Geo-Referencing Technology for Advanced Air Mobility (Advanced Air Mobility를 위한 영상 기반 위치 추정 및 Geo-Referencing 기술 동향)

  • U. Choi;D. Lee;H. Wi;I. Joo;I. Jang
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • As Advanced Air Mobility (AAM) technologies evolve, ensuring accurate navigation and localization in complex urban airspaces has become crucial. Because the Global Navigation Satellite System (GNSS) is prone to vulnerabilities in urban flight environment, an alternative localization technique is required. This paper examines vision-based localization technologies to enhance GNSS-free navigation. In addition, we explore various geo-referencing studies that utilize pre-existing spatial databases to improve the accuracy of vision-based localization under GNSS-denied conditions. This paper discusses the various types of onboard vision camera sensors, vision-based localization, spatial information databases, feature extraction methods, and matching techniques that contribute to the development of a vision-based localization and geo-referencing system for AAM, ensuring safety and reliability in urban operations.

A Study on the Trends of the FAA's NextGen (FAA의 차세대 항공운항(NexGen) 동향)

  • Kim, You gwang
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2012
  • "The FAA's Next Generation Air Transportation System" is a comprehensive overhaul of U.S National Airspace System to make air travel more convenient and dependable, while ensuring the flight is as safe, secure and hassle-free as possible. At its most basic level, NextGen represents an evolution from a ground-based system of air traffic control to a satellite-based system of air traffic management. This evolution is vital to meeting future demand, and to avoiding gridlock in the sky and at U.S airports. NextGen will open worldwide's skies to continued growth and increased safety while reducing aviation's environmental impact.

A Study on the Pilot's Adaptation for GPS Operation (조종사의 위성항행시스템 적응방안에 관한 연구)

  • Han, K.K.;Song, B.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.7 no.1
    • /
    • pp.7-18
    • /
    • 1999
  • The FAA, along with the ICAO and other members of the civil aviation community, has recognized that a GNSS will provide the primary stand-alone navigation system in the 21st Century. FAA has initiated plans to transition from its present ground-based navigation and landing system to satellite-based using signals generated by the GPS. In spite of some risks, GPS users are increasing rapidly. About 52 aircraft equipped with various GPS in their system and wide spread of GPS may be expected in Korea. However, the regulations concerning with CPS implementation were not established by the government. Another problem is GPS receiver's interface. The user interface, operating method and capability vary with GPS class and model. As a direct operator for the system, pilots have to ensure these limitations and rules for efficient adaptation and safety. The issues identified by the study are highly interrelated, and are evidence of aviation system problem. To treat one issue in isolation may improve certain aspects of the aviation system, but will ultimately fail to fundamentally increase the safety and efficiency for the system.

  • PDF

Configuration and Construction for the KASS KRS Site Infrastructure

  • Jang, HyunJin;Jeong, Hwanho;Son, Minhyuk;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2021
  • In this paper, we described configuration and construction of infrastructure for the KASS Reference Station (KRS), subsystem of Korea Augmentation Satellite System (KASS). KASS system consists of three subsystems(KRS, Mission Control Center (MCC), KASS Uplink Station (KUS)). One of these subsystems, KRS receives GNSS data for generating range error and integrity verification and sends to MCC. It is needed to antenna facilities for mounting GNSS antenna and shelter for operating KRS and infra equipment(power and network system, lightning and grounding system, fire extinguish) for operating KRS. For this reason, we have established the requirements for KRS infrastructure and constructed infrastructure for KRS to meet the requirements of KRS infrastructure.

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

Experimental Study on Automatic Car-Navigation by Satellite Positioning System (인공위성측량에 의한 자동차 자동위치결정에 관한 실험적 연구)

  • 강인준;정재형;장용구
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 1993
  • Position fixing is determined by triangulation, traverse surveying and astronomy surveying, However, when the station like a car move, it is impossible to determine the location of car. Satellite position fixing system can be used anywhere on earth arranged in 20, 000 km high with 24 satellites. The theoretical method of the fixing composition is possible to use satellite position fixing system. This paper is the part of the experiment which is dose for the development of the system used in Car-position fixing system. Also, this study is the comparison of one point positioning system and relative positioning system.

  • PDF

Improved Ultrasonic Satellite System for the Localization of Mobile Robots (이동로봇의 위치측정을 위한 개선된 초음파 위성 시스템)

  • Kim, Su-Yong;Yoon, Kang-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1240-1247
    • /
    • 2011
  • The localization of mobile robot in environment is a major concern in mobile robot navigation. So, many kinds of localization techniques have been researched for several years. Among them, the positioning system using ultrasound has received attention. Most of these ultrasonic positioning systems to synchronize the transmitters and receivers are used for RF (Radio Frequencies). However, due to the use of RF, the interference problems can not be avoided and the performance of radio frequencies directly affects the positioning performance. So we proposed the ultrasonic positioning system without synchronizing RF. The proposed system is based on existing USAT (Ultrasonic Satellite System) adopted infrastructure transmitting type, and consists of transmitter and receiver synchronizing modules instead of the radio frequency transmitters and receiver. The ultrasonic transmitters and receivers are synchronized individually by the transmitter and receiver synchronizing modules. In order to calculate the bias between the transmitter and receiver synchronizing modules, new positioning algorithm similar to GPS was proposed. The positioning performance of the improved USAT without synchronizing RF and the validity of the proposed positioning algorithm are verified and evaluated by experiments.

Modeling & Implementation of Operational Test and Evaluation, Offline Monitoring Software for Korea Augmentation Satellite System Uplink Station (한국형 위성항법 보정시스템 위성통신국 운용시험평가 오프라인감시 소프트웨어 모델링 및 구현)

  • Lee, Sanguk;You, Moonhee;Hyoung, Chang-Hee;Jeong, InCheol;Choi, SangHyouk;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.74-80
    • /
    • 2016
  • In this paper, the modeling and implementation results of the operational test and evaluation tool of the KASS up-link station composed of the GEO(Geostationary Earth Orbit) satellite signal analysis tool model that analyzes the GEO satellite signal and the GEO message analysis tool model that analyzes the GEO satellite navigation message. In addition, we describe the results of software modeling and implementation of some software models of GEO satellite and KASS up-link stations that can generate and provide simulated signals to operational test and evaluation tools of these KASS up-link stations.