• 제목/요약/키워드: Satellite Navigation

Search Result 1,081, Processing Time 0.022 seconds

A Study on Ship Route Generation with Deep Q Network and Route Following Control

  • Min-Kyu Kim;Hyeong-Tak Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Ships need to ensure safety during their navigation, which makes route determination highly important. It must be accompanied by a route following controller that can accurately follow the route. This study proposes a method for automatically generating the ship route based on deep reinforcement learning algorithm and following it using a route following controller. To generate a ship route, under keel clearance was applied to secure the ship's safety and navigation chart information was used to apply ship navigation related regulations. For the experiment, a target ship with a draft of 8.23 m was designated. The target route in this study was to depart from Busan port and arrive at the pilot boarding place of the Ulsan port. As a route following controller, a velocity type fuzzy P ID controller that could compensate for the limitation of a linear controller was applied. As a result of using the deep Q network, a route with a total distance of 62.22 km and 81 waypoints was generated. To simplify the route, the Douglas-Peucker algorithm was introduced to reduce the total distance to 55.67 m and the number of way points to 3. After that, an experiment was conducted to follow the path generated by the target ship. Experiment results revealed that the velocity type fuzzy P ID controller had less overshoot and fast settling time. In addition, it had the advantage of reducing the energy loss of the ship because the change in rudder angle was smooth. This study can be used as a basic study of route automatic generation. It suggests a method of combining ship route generation with the route following control.

Orbit Determination Accuracy Improvement for Geostationary Satellite with Single Station Antenna Tracking Data

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Hae-Yeon;Kim, Hae-Dong;Kim, Jae-Hoon
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.774-782
    • /
    • 2008
  • An operational orbit determination (OD) and prediction system for the geostationary Communication, Ocean, and Meteorological Satellite (COMS) mission requires accurate satellite positioning knowledge to accomplish image navigation registration on the ground. Ranging and tracking data from a single ground station is used for COMS OD in normal operation. However, the orbital longitude of the COMS is so close to that of satellite tracking sites that geometric singularity affects observability. A method to solve the azimuth bias of a single station in singularity is to periodically apply an estimated azimuth bias using the ranging and tracking data of two stations. Velocity increments of a wheel off-loading maneuver which is performed twice a day are fixed by planned values without considering maneuver efficiency during OD. Using only single-station data with the correction of the azimuth bias, OD can achieve three-sigma position accuracy on the order of 1.5 km root-sum-square.

  • PDF

QZSS L5 Signal Processing Results in Korea (한국에서 QZSS 위성의 L5 신호처리 결과)

  • Joo, In-One;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.6-11
    • /
    • 2011
  • Launch of the first Quasi-Zentih Satellite System (QZSS) satellite, dubbed Michibiki, took place September 11, 2010 and technical and application verification of the satellite is being carried out. This paper presents the results obtained from processing of the L5 signal transmitted from the QZSS satellite. The QZSS L5 signal is collected in ETRI, Korea. And then, the acquisition and tracking are performed by the L5 software receiver implemented by ETRI. The tracking loop of FLL, PLL, and DLL, the EPL correlator output, and the C/No output results show that the QZSS L5 signal is normally processed. Finally, the paper demonstrates that the QZSS L5 signal could be used as GPS satellite based augmentation system in Korea as well as Japan.

Utilization of Satellite Imagery for Telematics (위성영상정보의 텔레매틱스 활용 방안)

  • 손홍규;이중근;박정환;최종현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.399-404
    • /
    • 2004
  • Recently GPS has been playing an increasingly important role in geodesy and positioning, for example, car navigation system, surveying, ITS(intelligent transport systems), LBS(Location Based Service) and so on. For telematics application, reception conditions of GPS signal are important. In some situation, such as in areas between buildings, metropolitan areas or areas with large skyscraper complexes, there are situations whereby the satellite signal is seriously restricted by various obstacles. Before the signal arrives at the receiver, it may be blocked, reflected, delayed, attenuated or scattered by terrestrial obstacles such as buildings. In this paper, we present satellite imagery data for telematics application. Therefore, for propriety of this studies, we made a GPS satellite visibility experiments in Bun-Dang on same time. This paper describes an approach to calculate building level using 0.6m, 1m, 6.6m resampling aerial polo imagery in stead of the satellite imagery and make a comparative study of accuracy. This paper tests the simulation of GPS signal using the building level.

  • PDF

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.

Recommendation of Navigation Performance for K-UAM Considering Multipath Error in Urban Environment Operation

  • Sangdo Park;Dongwon Jung;Hyang Sig Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.379-389
    • /
    • 2023
  • According to the Korea Urban Air Mobility (K-UAM) Concept of Operation (ConOps), the Global Navigation Satellite System (GNSS) is recommended as the primary navigation system and the performance specification will be implemented considering the standard of Performance Based Navigation (PBN). However, by taking into account the characteristics of an urban environment and the concurrent operations of multiple UAM aircraft, the current PBN standards for civil aviation seem difficult to be directly applied to an UAM aircraft. Therefore, by referring to technical documents published in the literature, this paper examines the feasibility of applying the proposed performance requirements to K-UAM, which follows the recommendation of navigation performance requirements for K-UAM. In accordance with the UAM ConOps, the UAM aircraft is anticipated to maintain low altitude during approach and landing phases. Subsequently, the navigation performance degradation could occur in the urban environment, and the primary degradation factor is identified as multipath error. For this reason, to ensure the safety and reliability of the K-UAM aircraft, it is necessary to analyze the degree of performance degradation related to the urban environment and then propose an alternative aid to enhance the navigation performance. To this end, the aim of this paper is to model the multipath effects of the GNSS in an urban environment and to carry out the simulation studies using the real GNSS datasets. Finally, the initial navigation performance requirement is proposed based on the results of the numerical simulation for the K-UAM.

A Study on Navigation Performance Analysis Technique of Pseudolite Navigation Systems (의사위성 항법시스템의 항법성능 분석기법 연구)

  • Park, Jun-Pyo;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.947-957
    • /
    • 2014
  • In this paper, the navigation performance analysis techniques of a pseudolite navigation system are proposed. To validate the techniques, operation and navigation test results using real test data are addressed. The conventional navigation performance analysis methods used for satellite navigation system, such as Galileo and GPS, are analyzed to identify the error factor and to check the criterion of UERE defined in the standard document. And then the method to calculate the UERE through the ranging measurements are studied. By identifying the error factor in pseudolite navigation system based on these methods, the available UERE observation and calculation method applicable to pseudolite navigation are proposed. Simulation results considering various circumstances and the actual flight test results are presented to verify the proposed method.

Modeling & Simulation Software Design for Coverage Analysis of Multiple Radio Positioning Integration System

  • Koo, Moonsuk;Kim, YoungJoon;So, Hyoungmin;Oh, Sang Heon;Kim, Seong-Cheol;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.47-57
    • /
    • 2016
  • Since the Global Navigation Satellite System (GNSS) may not provide navigation information due to external interferences, many countries have plans to prepare a backup system for this situation. One of the possible GNSS backup systems is a multiple radio positioning integration system in combination with the terrestrial radio navigation system. Before constructing such a GNSS backup system, M&S software is needed to analyze if the system satisfies the performance the required navigation performance. This study presents requirements of M&S software for coverage analysis of the navigation system, and proposes an M&S software design scheme on the basis of the requirements. The M&S software is implemented, and coverage analysis is performed to verify the validity of the proposed design scheme.