• Title/Summary/Keyword: Satellite Navigation

Search Result 1,081, Processing Time 0.021 seconds

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

Ship-Borne Global Navigation Satellite System (GNSS) for Ionospheric Total Electron Content Monitoring: Preliminary Results from ISABU Experiments (선박 GNSS(Global Navigation Satellite System) 자료를 사용한 전리권 정보 산출 실험: 이사부호 초기 결과)

  • Dong-Hyo Sohn;Byung-Kyu Choi;Junseok Hong;Gyeong Mok Lee;Woo Kyoung Lee;Jong-Kyun Chung;Yosup Park
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.199-209
    • /
    • 2024
  • In this study, we calculated total electron content (TEC) using ship-borne global navigation satellite system (GNSS) observations and validated the results by comparing the ground-based TEC. GNSS is an effective tool for monitoring the ionosphere as it allows 24-hour observations, is low cost, and is easy to install. However, most GNSS stations are located on land, which leads to a lack of data from the ocean. Therefore, we conducted an experiment collecting GNSS data in the ocean by installing GNSS observation systems aboard the research vessel 'ISABU', operated by the Korea Institute of Ocean Science and Technology. We estimated TEC using GNSS data from July 30 to August 24, 2021. From the results, we confirmed daily and latitudinal variations of TEC as expected. Additionally, we compared the results with TEC derived from nearby ground-based GNSS stations and then verified similar variations. Based on these results, we plan to research ionospheric climatology using long-term data and assess its potential for ongoing ionospheric monitoring.

Block Correlator for Real-Time GPS L1 Software Receiver (소프트웨어 기반의 실시간 GPS L1 수신기를 위한 블록 상관기)

  • Kim, Tae-Hee;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • In this paper, a software-based real-time GPS L1 receiver is proposed for the block correlation techniques. Recently various navigation satellite navigation receivers in the environment for the development of more efficient software-based real-time receiver need to be developed. It is composed of components such as signal supplier, signal acquisition, signal tracking, navigation data processing, and navigation solution. They are designed and implemented as component based software for enhancing reusability and modifiability for user to have more flexibility during development of receiver. This paper will describe design, implementation, and verification of the developed realtime software GNSS receiver.

Analysis of Requirements for Verification of SBAS Approach Procedure for Flight Test (비행시험용 SBAS 접근 절차 검증을 위한 요구사항 분석)

  • Hong, Jae-Beom;Hong, Gyo-Young;Kang, Hee Won;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.549-553
    • /
    • 2017
  • The KASS development project, a Korean SBAS launched in 2014, is under development for the APV-1 Class SOL service in 2022. Flight tests should be conducted to analyze development requirements and performance requirements for KASS R & D. However, since the evaluation items have not yet been presented in Korea, FAA and ICAO regulations should be analyzed so that evaluation items for flight testing for KASS development should be structured and comply with international standards. In this paper, we analyze the procedure verification of SBAS for flight test using satellite navigation system.

EVALUATION OF THE MEASUREMENT NOISE AND THE SYSTEMATIC ERRORS FOR THE KOMPSAT-1 GPS NAVIGATION SOLUTIONS

  • Kim Hae-Dong;Kim Eun-Kyou;Choi Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.278-280
    • /
    • 2004
  • GPS Navigation Solutions are used for operational orbit determination for the KOMPSAT-1 spacecraft. GPS point position data are definitely affected by systematic errors as well as noise. Indeed, the systematic error effects tend to be longer term since the GPS spacecrafts have periods of 12 hours. And then, the overlap method of determining orbit accuracy is always optimistic because of the presence of systematic errors with longer term effects. In this paper, we investigated the measurement noise and the system error for the KOMPSAT-l GPS Navigation Solutions. To assess orbit accuracy with this type of data, we use longer data arcs such as 5-7 days instead of 30 hour data arc. For this assessment, we should require much more attention to drag and solar radiation drag parameters or even general acceleration parameters in order to assess orbit accuracy with longer data arcs. Thus, the effects of the consideration of the drag, solar radiation drag, and general acceleration parameters were also investigated.

  • PDF

Test Results of WADGPS System using Satellite-based Ionospheric Delay Model for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Song, Kiwon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • Most existing studies on the wide-area differential global positioning system (WADGPS) employed a grid ionosphere model for error correction in the ionospheric delay. The present study discusses the application of satellite-based ionospheric delay model that provides an error model as a plane function with regard to individual satellites in order to improve accuracy in the WADGPS. The satellite-based ionospheric delay model was developed by Stanford University in the USA. In the present study, the algorithm in the model is applied to the WADGPS system and experimental results using measurements in the Korean Peninsula are presented. Around 1 m horizontal accuracy was exhibited in the existing planar fit grid model but when the satellite-based model was applied, correction performance within 1 m was verified.

QZSS L1 C/A Signal Processing Results in Korea (한국에서 QZSS 위성의 L1 C/A 신호처리 결과)

  • Joo, In-One;Shin, Chun-Sik;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • Michibiki is the first QZSS satellite, which was launched by a H-IIA rocket departing from the Tanegshima in Japan on 11 September, 2010 and now operated successfully. This paper presents the results obtained from processing of the L1 C/A signal transmitted from the QZSS satellite. The acquisition and tracking are performed by the L1 software receiver implemented by ETRI. The signal processing results show that QZSS L1 C/A signal is normally processed through the tracking loop results of FLL, PLL, and DLL, the EPL correlator output, and the C/No output. Finally, the paper demonstrates that the QZSS satellite could be used in the navigation system together with the GPS satellite in Korea.

Performance Analysis of the GPS Receiver under High Acceleration and Jerk Environments

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.279-283
    • /
    • 2006
  • The GPS receiver developed by KARI for the satellite launch vehicle should operate under severe dynamic environments such as high acceleration and jerk. Several terrestrial tests including the outdoor centrifuge test are planed in order to verify performances of the GPS receiver before flight. This paper deals with preliminary test results of the GPS receiver using a GPS signal generator before the centrifuge test that is a performance test of the GPS receiver using live GPS satellite signals. Test methods of the GPS receiver for the satellite launch vehicle under high centripetal acceleration and jerk utilizing a GPS signal generator are described. The simulation results are also analyzed in this paper.

  • PDF

GPS Satellite Orbit Prediction Based on Unscented Kalman Filter

  • Zheng, Zuoya;Chen, Yongqi;Xiushan, Lu;Zhixing, Du
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.191-196
    • /
    • 2006
  • In GPS Positioning, the error of satellite orbit will affect user's position accuracy directly, it is important to determine the satellite orbit precise. The real-time orbit is needed in kinematic GPS positioning, the precise GPS orbit from IGS would be delayed long time, so orbit prediction is key to real-time kinematic positioning. We analyze the GPS predicted ephemeris, on the base of comparison of EKF and UKF, a new orbit prediction method is put forward based on UKF in this paper, the result shows that UKF improves the orbit predicted precision and stability. It offers a new method for others satellites orbit determination as Galileo, and so on.

  • PDF

LEO Satellite Time Synchronization Architecture

  • Kwon, Ki-Ho;Kim, Day-Young;Lee, Jong-In;Kim, Hak-Jung;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-370
    • /
    • 2006
  • A GPS-based time synchronization technique employing a refined HW circuitry and SW algorithm is considered as fine time-management system for Low Earth Orbit (LEO) remote sensing satellites. By synchronizing the On-Board Time (OBT) within satellites to the GPS 1PPS, a very expensive, highly accurate on-board clock is not required to determine the precise on-board time management. Also, the satellite command generation in ground stations and postprocessing of earth observation data which a particular image is acquired. This paper analyses on-orbit verification of the existing satellite time sync architecture and presents a new time sync architecture, operation and relation between the OBT and the GPS time.

  • PDF