• 제목/요약/키워드: Satellite Navigation

검색결과 1,061건 처리시간 0.028초

Performance Analysis of Array Processing Techniques for GNSS Receivers under Array Uncertainties

  • Lee, Sangwoo;Heo, Moon-Beom;Sin, Cheonsig;Kim, Sunwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권2호
    • /
    • pp.43-51
    • /
    • 2017
  • In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by electromagnetic simulation was used along with the Jahn's channel model, which is an experimental channel model. Based on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the performance improvement of array processing through array calibration was also examined.

QZSS TEC Estimation and Validation Over South Korea

  • Byung-Kyu Choi;Dong-Hyo Sohn;Junseok Hong;Woo Kyoung Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.343-348
    • /
    • 2023
  • The ionosphere acts as the largest error source in the Global Navigation Satellite System (GNSS) signal transmission. Ionospheric total electron content (TEC) is also easily affected by changes in the space environment, such as solar activity and geomagnetic storms. In this study, we analyze changes in the regional ionosphere using the Qusai-Zenith Satellite System (QZSS), a regional satellite navigation system. Observations from 9 GNSS stations in South Korea are used for estimating the QZSS TEC. In addition, the performance of QZSS TEC is analyzed with observations from day of year (DOY) 199 to 206, 2023. To verify the performance of our results, we compare the estimated QZSS TEC and CODE Global Ionosphere Map (GIM) at the same location. Our results are in good agreement with the GIM product provided by the CODE over this period, with an averaged difference of approximately 0.1 TECU and a root mean square (RMS) value of 2.89 TECU.

Enhancement of Continuity and Accuracy by GPS/GLONASS Combination, and Software Development

  • Kang, Joon-Mook;Lee, Young-Wook;Park, Joung-Hyun
    • Korean Journal of Geomatics
    • /
    • 제2권1호
    • /
    • pp.65-73
    • /
    • 2002
  • GPS in the United States and GLONASS of the old Soviet Union are used currently as satellite navigation systems. Plans are being made to use the Galileo satellite system in Europe, and these plans focus on a combined application of the satellite navigation systems. In this study, we examined the possibility of effective application of a combination of GPS/GLONASS in urban areas, where 3-dimensional positioning is impossible with GPS alone. We analyzed the 3-D coordinate deviation of a GLONASS satellite by integration interval and compared it with GLONASS satellite coordinates in precise ephmerides by transforming it into WGS84. We also programmed GPS/GLONASS, analyzed 3-D positioning accuracy by static surveying and kinematic surveying with Ashtech Z18 receivers and Legacy receivers, and then compared the results to those of GPS surveying. As a result, we are able to decide the integration interval for producing GLONASS satellite coordinates in navigation and geographical information and construct a GPS/GLONASS data processing system by developing a DGPS/DGLONASS positioning program. If more than four GLONASS satellites are observed, the accuracy of GPS/GLONASS is better than that of GPS positioning. As a result of kinematic surveying in a congested urban area with skyscrapers, we discovered that the GPS/LONASS combination is very effective.

  • PDF

Preliminary Orbit Determination For A Small Satellite Mission Using GPS Receiver Data

  • Nagarajan, Narayanaswamy;Bavkir, Burhan;John, Ong Chuan Fu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.141-144
    • /
    • 2006
  • The deviations in the injection orbital parameters, resulting from launcher dispersions, need to be estimated and used for autonomous satellite operations. For the proposed small satellite mission of the university there will be two GPS receivers onboard the satellite to provide the instantaneous orbital state to the onboard data handling system. In order to meet the power requirements, the satellite will be sun-tracking whenever there is no imaging operation. For imaging activities, the satellite will be maneuvered to nadir-pointing mode. Due to such different modes of orientation the geometry for the GPS receivers will not be favorable at all times and there will be instances of poor geometry resulting in no output from the GPS receivers. Onboard the satellite, the orbital information should be continuously available for autonomous switching on/off of various subsystems. The paper presents the strategies to make use of small arcs of data from GPS receivers to compute the mean orbital parameters and use the updated orbital parameters to calculate the position and velocity whenever the same is not available from GPS receiver. Thus the navigation message from the GPS receiver, namely the position vector in Earth-Centered-Earth-Fixed (ECEF) frame, is used as measurements. As for estimation, two techniques - (1) batch least squares method, and (2) Kalman Filter method are used for orbit estimation (in real time). The performance of the onboard orbit estimation has been assessed based on hardware based multi-channel GPS Signal simulator. The results indicate good converge even with short arcs of data as the GPS navigation data are generally very accurate and the data rate is also fast (typically 1Hz).

  • PDF

Analysis of Pseudolite Augmentation for Vessel Berthing

  • Cho, Deuk-Jae;Park, Sang-Hyun;Suh, Sang-Hyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.15-19
    • /
    • 2006
  • GPS has been increasingly exploited to provide positioning and navigation solutions for a variety of applications. In vessel berthing application, however, there are stringent requirements in terms of positioning accuracy, availability and integrity that cannot be satisfied by GPS alone. This is because the performance of satellite-based positioning and navigation systems are heavily dependent on both the number and the geometric distribution of satellite tracked by receivers. Due to the limited number of GPS satellites, a sufficient number of ‘visible’ satellites cannot be sometimes guaranteed. This paper discusses some issues associated with the implementation of ground-based pseudolite augmentation for vessel berthing. Pseudolite means small transmitter that transmits GPS-like signals in local area. Actually, pseudolite can play three different roles in GPS augmentation scheme, depending on the operational conditions. Firstly, in the case of kinematic GPS operation where there are no signal blockages, and more than five satellites are available, additional pseudolites strengthen the GPS satellite-pseudolite geometry, and more accurate and reliable positioning solution can be achieved. Secondly, in the case when there are adverse GPS operational environments in which the number of tracked satellites is less than four, pseudolites can complement the GPS signals. In the third case, GPS signals are completely unavailable, such as when operated indoor. In such cases the pseudolites can replace the satellite constellation. However, the first role will be considered in this paper, since more than four satellite signals can usually be tracked in most marine applications. This paper presents that the pseudolite-augmented precise positioning system can provides continuous centimeter-level positioning accuracy through comparison analysis of RDOP simulation result of the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation.

  • PDF

저궤도 위성용 정밀궤도 계산모델 개발 (Precision Orbit Propagator for Low Earth Orbiters)

  • 김정래;노정호;기창돈
    • 한국항행학회논문지
    • /
    • 제16권6호
    • /
    • pp.900-909
    • /
    • 2012
  • 저궤도 위성에 탑재하는 위성항법 수신기는 관측된 신호를 필터링하고 신호중단 시 궤도예측을 수행하는 항법필터를 장착하는데, 사용하는 위성동역학 모델이 필터성능을 주로 결정하게 된다. 본 연구에서는 항법필터에 필요한 정밀위성동역학 알고리듬을 연구하고 이를 계산하는 프로그램을 개발하였다. 정밀 중력가속도, 정밀좌표변환, 3체 중력, 대기저항, 태양복사압 모델을 결합하였으며, 해외 정밀궤도결정 프로그램을 이용하여 정확도를 검증하였다. 시뮬레이션과 실제 궤도 데이터를 사용하여 초기위치 정확도에 따른 궤도예측정확도를 분석 하였다. 개발된 모델은 위성탑재용 실시간 항법필터에 적용되는 동역학모델로는 충분한 정확도를 가지는 것을 확인하였다.

Carrier Phase Based Navigation Algorithm Design Using Carrier Phase Statistics in the Weak Signal Environment

  • Park, Sul Gee;Cho, Deuk Jae;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.7-14
    • /
    • 2012
  • Due to inaccurate safe navigation estimates, maritime accidents have been occurring consistently. In order to solve this, the precise positioning technology using carrier phase information is used, but due to high buildings near inland waterways or inclination, satellite signals might become weak or blocked for some time. Under this weak signal environment for some time, the GPS raw measurements become less accurate so that it is difficult to search and maintain the integer ambiguity of carrier phase. In this paper, a method to generate code and carrier phase measurements under this environment and maintain resilient navigation is proposed. In the weak signal environment, the position of the receiver is estimated using an inertial sensor, and with this information, the distance between the satellite and the receiver is calculated to generate code measurements using IGS product and model. And, the carrier phase measurements are generated based on the statistics for generating fractional phase. In order to verify the performance of the proposed method, the proposed method was compared for a fixed blocked time. It was confirmed that in case of a weak or blocked satellite signals for 1 to 5 minutes, the proposed method showed more improved results than the inertial navigation only, maintaining stable positioning accuracy within 1 m.

A Preliminary Study of Korean Dual-Frequency SBAS

  • Yun, Ho;Han, Deokhwa;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권1호
    • /
    • pp.11-16
    • /
    • 2014
  • A Satellite Based Augmentation System (SBAS) is a representative differential GNSS system, which is used for the navigation performance improvement of Global Navigation Satellite System (GNSS) users. SBAS has been developed focusing on the securement of user integrity so that it can be used for the navigation in aviation fields. Accordingly, the development of SBAS has been completed, and it has been actively used in the United States, Europe, and Japan. As the new satellite of Global Positioning System (GPS) recently started to broadcast new civil signals (L5 frequency), the methods for improving user navigation performance in SBAS using this signal have also been studied. In Korea, to keep pace with these circumstances, full-scale SBAS development is expected to start in 2014, and studies on dual-frequency SBAS using L1/L5 frequencies will also be performed. In this study, before the full-scale development of dual-frequency SBAS in Korea, a simulation was performed to predict the performance and analyze the expected effects.

Precise Point Positioning using the BeiDou Navigation Satellite System in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권2호
    • /
    • pp.73-77
    • /
    • 2015
  • Global Positioning System (GPS) Precise Point Positioning (PPP) has been extensively used for geodetic applications. Since December 2012, BeiDou navigation satellite system has provided regional positioning, navigation and timing (PNT) services over the Asia-Pacific region. Recently, many studies on BeiDou system have been conducted, particularly in the area of precise orbit determination and precise positioning. In this paper PPP method based on BeiDou observations are presented. GPS and BeiDou data obtained from Mokpo (MKPO) station are processed using the Korea Astronomy and Space Science Institute Global Navigation Satellite System (GNSS) PPP software. The positions are derived from the GPS PPP, BeiDou B1/B2 PPP and BeiDou B1/B3 PPP, respectively. The position errors on BeiDou PPP show a mean bias < 2 cm in the east and north components and approximately 3 cm in the vertical component. It indicates that BeiDou PPP is ready for the precise positioning applications in the Asia-Pacific region. In addition, BeiDou tropospheric zenith total delay (ZTD) is compared to GPS ZTD at MKPO station. The mean value of their difference is approximately 0.52 cm.

데이터 통신망을 이용한 복수 구조요원 실내 위치 추적 (Indoor Location Tracking for First Responders using Data Network)

  • 천세범;임순;이민수;허문범
    • 한국항행학회논문지
    • /
    • 제17권6호
    • /
    • pp.810-815
    • /
    • 2013
  • 구조 요원 위치 추적을 위해 Wi-Fi 기반 위치 추적 기술을 이용하는 경우, 거리 측정 정보를 제공하지 않는 Wi-Fi의 특성상 RSSI 핑거프린트 데이터베이스나 신호 감쇄 모델을 이용하여 거리측정치를 생성해 내어야 한다. 그러나 구조 현장에서 임시로 구축되는 데이터 통신 네트워크에서는 사전에 데이터베이스 구축이 어려워 적용이 곤란하다. 본 논문에서는 이러한 한계를 극복하기 위해 통신 네트워크 구축을 위해 사용된 전개식 AP의 근접 정보와 보행 항법 정보를 이용하여 복수 구조 요원의 위치 추적 방법을 연구하였다.