• 제목/요약/키워드: Satellite Image

검색결과 2,129건 처리시간 0.033초

국가기상위성센터 영상처리 시스템 구축을 위한 국내외 기상위성 영상처리 시스템 아키텍처 분석 (Survey of System Architectures of Meteorological Satellite Image Processing System for Building NMSC Image Processing Systems)

  • 국승학;서용진;김현수;사공영보;이봉주;장재동;오현종
    • 대한원격탐사학회지
    • /
    • 제28권1호
    • /
    • pp.101-116
    • /
    • 2012
  • 본 논문에서는 기존에 구축되어있는 위성영상처리 시스템의 구축현황을 살펴보고, 향후 국내 기상위성 영상처리 시스템 구축에서 고려해야할 사항에 대해 살펴본다. 기존의 위성영상처리 시스템은 운영 중인 개별 위성에 대한 영상의 수집, 처리, 배포 기능을 구현한 시스템이 대부분이었다. 그러나 향후 지구환경 감시를 위한 다양한 위성들의 개발에 따른 새로운 시스템의 통합, 기존 시스템에 대한 유지보수에 대한 문제점이 지적되고 있다. 미국의 NOAA, NWS, 유럽의 ESA등에서는 이러한 문제점을 해결하기 위해 기존의 시스템에 대한 개선 사업을 진행 중에 있다. 이에 본 논문에서는 현재 국내외에서 개발되는 위성영상처리시스템의 구축 현황을 살펴보고, 개발 이슈 및 개발 전략에 대해 살펴보고자 한다.

심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법 (Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders)

  • ;이효종
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권8호
    • /
    • pp.243-252
    • /
    • 2023
  • 위성 이미지는 토지 표면 조사에서 매우 중요하다. 따라서 위성에서 지상국으로 이미지를 전송하기 위해 다양한 방법을 사용하고 있다. 그러나 전송 시스템의 품질 저하로 인해 이미지는 왜곡에 취약하고 올바른 데이터를 제공하지 못하고 있다. 그러한 이미지의 세그먼트 결과는 토지 표면 데이터를 올바르게 분류할 수 없다. 본 논문에서는 위성영상에 대한 자동인코더 기반의 영상 전처리 방법을 제안한다. 실험결과 사전 향상 기술을 사용하여 세그멘테이션 결과도 크게 향상될 수 있음을 보여주었다. 또한 본 논문에서 적용한 항공 이미지 향상기법은 토지 자원의 정확한 평가에 이바지할 수 있음을 확인하였다.

Sub-satellite Point Observation and Image Registration Accomplishment with GOES-9 IMC-Off Status

  • Lim Hyun-Su;Ahn Sang-il;Choi Hae-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.212-215
    • /
    • 2004
  • GOES-9 has been operated with the status of the Image Motion Compensation(IMC) off since last October. As the IMC function turned off, the sub-satellite point(SSP) of GVAR data was changed with the effect of the satellite motions. This makes the image registration, to maintain pixels within an image and between successive images to their earth-referenced information, not to be possible any more. In the paper, we introduce the method to accomplish image registration and the result of the SSP observation with the status of IMC off.

  • PDF

Mainframe 컴퓨터를 활용한 위성영상 처리 소프트웨어 개발 (Development of Satellite Image Processing Software on Mainframe Computer)

  • 양영규;조성익;배영래
    • 대한원격탐사학회지
    • /
    • 제5권1호
    • /
    • pp.29-39
    • /
    • 1989
  • A study to develop generalized and systematically designed satellite image processing software system on mainframe computer was successfully carried out. Commercially available softwares such as LARSYS were analyzed and modified, and well known satellite data processing algorithms were implemented into comprehensive software. New algorithms were also presented and developed. The contents of developed softwere system may be divided into 8 major sections: menu and user interface, data file management, preprocessing, enhancement in monochrome image, multi-dimension image analysis, scene classification, image display/hardcopy, image handle utility software. Some additional software such as GIS and DBMS will make this software more comprehensive and generalized one for the satellite data processing.

Designation of Buildings in Urban Area of High-resolution Satellite Image Using Generalized Hough Transform

  • Lee, Seung-Hee;Park, Sung-Mo;Lee, Joon-Whoan;Kim, Joon-Cheol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.156-158
    • /
    • 2003
  • Analysis of high-resolution satellite image becomes important for cartography, surveillance, and remote sensing. However, there are lots of problems to be solved for automatic analysis of high-resolution satellite image especially in urban area. The problems are originated from the increased complexity due to the unnecessary details and shadows, and time-varying illuminations. Because of such obstacles, it seems impossible to make automatic analysis. This paper proposes a way of change detection of buildings in urban area by using digital vector map. The proposed way makes the buildings on the vector map parameterized, and searches them in the preprocessed high-resolution image by using generalized Hough transform. The searched building objects are overlaid on the satellite image. The overlaid image can help to detect the change of building rapidly.

  • PDF

위성영상을 이용한 토지이용분류에 관한 연구 (Landuse classifications from Thematic Mapper Images Using a Maximum Likelihood Method)

  • 박희성;박승우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.366-369
    • /
    • 1998
  • To get the knowledge of land uses for watersheds, Thematic Mapper image from Landsat 5 satellite was used. The image was classified into land covers/uses by maximum likelihood classification technique. Land uses from the satellite image in this study was compared with those from the topographical map in previous. It was found that Land uses from the satellite image had a good reflection of real situations and more advantage in the reduction of time and cost.

  • PDF

Automated Mismatch Detection based on Matching and Robust Estimation for Automated Image Navigation

  • Lee Tae-Yoon;Kim Taejung;Choi Rae-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.709-712
    • /
    • 2005
  • Ground processing for geostationary weather satellite such as GOES, MTSAT includes the process called image navigation. Image navigation means the retrieval of satellite navigational parameters from images and requires landmark detection by matching satellite images against landmark chips. For an automated preprocessing, a matching must be performed automatically. However, if match results contain errors, the accuracy of image navigation deteriorates. To overcome this problem, we propose the use of a robust estimation technique, called Random Sample Consensus (RANSAC), to automatically detect mismatches. We tested GOES-9 satellite images with 30 landmark chips. Landmark chips were extracted from the world shoreline database. To them, matching was applied and mismatch results were detected automatically by RANSAC. Results showed that all mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.

  • PDF

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF