• Title/Summary/Keyword: Satellite Control

Search Result 1,492, Processing Time 0.034 seconds

Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle (위성발사체의 궤적최적화와 최적 유도 알고리듬 설계)

  • Roh, Woong-Rae;Kim, Yodan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

A Study on the Effective Data Transmission for the Remote Monitoring And Control System Using TDM/TDMA

  • Wook, Shin-Gang;Tak, Hong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.6-65
    • /
    • 2001
  • The satellite communication has been widely applied in the various fields included the remote monitoring and control system through the technical progress. In the star network that is a type of the satellite communication network, users can easily use an earth station because of the large scale and high power of the hub station. This type has many profits which are flexible of network configuration, and can conveniently and inexpensively supply various services which is used in the data acquisition and distribution by important communication means for construction of information society. Using these profits, the satellite communication system is applied to the unmaned remote operation field for the remote control and monitor of the water treatment plants But, ...

  • PDF

Space Qualification of MMICs for COMS Communications Transponder (통신해양기상위성 통신 중계기용 MMIC의 우주인증)

  • Jang, Dong-Pil;Yeom, In-Bok;O, Seung-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.56-62
    • /
    • 2006
  • This paper describes the MMIC product qualification of the Ka band satellite transponder for the COMS(Communication, Ocean and Meteorological Satellite). Ka-band active equipment for the COMS communications transponder are being developed by using 12 kinds of MMICs which include low noise amplifiers, medium power amplifiers, frequency mixers, frequency multipliers, RF switch, and HEMT attenuator MMIC, Those MMICs had been fabricated at the MMIC production foundry of northrop Grumman Space Technology (Velocium) which is qualified for space application, and experienced in various space programs during past decades. For the MMIC product qualification, Visual inspection and SEM inspection had been performed, and burn-in test for 240 hours and accelerated life-test for 1000 hours had been done on test fixtures of individual MMIC products at $125^{\circ}C$. Additionally, infrared temperature scanning and finite element simulation were performed to analyze and confirm the channel temperature of semiconductor devices on several representatives of those MMIC products that os one of the most important factors in performance degradation and life reduction.

  • PDF

The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 자이로 고전압 발생기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Backup Site Operation Of COMS Image Data Acquisition And Control System (천리안위성 영상 수신 및 처리에 대한 백업 지상국 운영)

  • Cho, Young-Min;Kwon, Eun Joo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • The backup site operation of the Image Data Acquisition and Control System (IDACS) for Communication Ocean Meteorological Satellite (COMS) is discussed in terms of the ground station configuration, image data processing, and the characteristics of backup activities for both the meteorological image data and the ocean image data. The well-performed backup operation of the COMS IDACS is also confirmed with the first three years normal operation results from April, 2011 to March, 2014. The operation results are analyzed through statistical approach to provide the achieved operational performance of the image data reception, preprocessing, and broadcast.

Low Earth Orbit Satellite Momentum Dumping Using Thruster (추력기를 이용한 저궤도 위성 모멘텀 덤핑)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.147-158
    • /
    • 2020
  • In this paper, we will review the thruster based reaction wheel momentum dumping method for low Earth orbit satellite. Thruster based momentum dumping is widely used in GEO satellites by performing momentum dumping and attitude control using thrusters at the specific time. LEO satellite should perform momentum dumping at any time, thus it is not appropriate to use GEO satellite's momentum dumping method. In this research, we will review the method for LEO satellite, which perform momentum dumping always and use reaction wheels for attitude control during dumping. To reduce thruster's valve on and off counts, we propose to use the maximum pulse width for thruster operation. To prevent attitude error increase by thrusters, we adjust the thruster operation interval. Through simulation, we verify the proposed method's effects.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

Design and Implementation of Real Time AGC for Satellite TDMA Communication Systems (위성 시분할다중접속 통신시스템을 위한 실시간 자동이득제어기 설계 및 구현)

  • Lee, Huisoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.298-304
    • /
    • 2013
  • Channel attenuation must be taken into account when designing Time Division Multiple Access(TDMA) communication systems. In addition, Automatic Gain Control (ACG) is a requirement in satellite communication systems in order to form a stable network regardless of rapidly changes in channel environment. In this study, we present an AGC with possible real-time application to time slots in satellite TDMA communication systems. A satellite TDMA system was designed and implemented in order to test the performance of the proposed real-time AGC, and the system's BER (Bit Error Rate) was found by applying the proposed AGC algorithm. These results can be expected to be of high value in improving the stability of satellite TDMA communication systems in the future.

Determination of the Ground Station Locations for both Dual-Site Ranging and Site-Diversity at Q/V-band Satellite Communication for an Intersatellite System Scenario

  • Yilmaz, Umit C.;Cavdar, Ismail H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • Generally, Low Earth Orbit (LEO) satellites are used to collect image or video from earth's surface. The collected data are stored on-board and/or transmitted to the main ground station directly or via polar ground station using terrestrial line. Today, an intersatellite link between a LEO and a GEO satellite allows transmission of the collected data to the main ground station through the GEO satellite. In this study, an approach for a continuous communication starting from LEO through GEO to ground station is proposed by determining the optimum ground station locations. In doing so, diverse ground stations help to determine the GEO orbit as well. Cross-correlation of the long term daily rainfall averages are multiplied with the logarithmic correlation of the sites to calculate the joint correlation of the diverse ground station locations. The minimum values of this joint correlation yield the optimum locations of the ground stations for Q/V-band communication and satellite control operations. Results for several case studies are listed.