• Title/Summary/Keyword: Satellite Communication Systems

Search Result 467, Processing Time 0.034 seconds

ITU-R Study on Frequency Sharing for Mobile Satellite Services (ITU-R의 이동위성업무 주파수 공유 연구 현황)

  • B.J. Ku;D.S. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.

A Study on the Satellite Orbital Positioning Method for Efficient Orbit Utilization (궤도자원의 효율적인 활용을 위한 위성궤도 선정 기법에 관한 연구)

  • 권태곤;박세경김재명
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.147-150
    • /
    • 1998
  • To determine the satellite orbital positions under consideration of interference caused by inter-satellite systems is one of the most important issues in terms of optimal usage of satellite network resources. In this paper, we present the orbital positioning method for a new satellite to minimize inter-satellite system interference effect in the fixed satellite communication using a new method. Through the computer simulation, it is clear that the proposed method is suitable to determine the satellite orbital positions.

  • PDF

Data Transmission Algorithm for LED Communication Systems (LED 통신 시스템의 데이터 전송 알고리즘)

  • Kim, Kyung Ho;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • LED communication is a wireless communication technology to transmit information using visible light coming out from the LED(Light Emitting Diode). It is a technique that can overcome RF(Radio Frequency) communication problems that are frequency allocations, human body hazards, security vulnerabilities, and interference between electronic devices. As a technique that can be used as lighting and communications with using LED, LED communication is suitable for ubiquitous environment. This paper introduces the process of data transmission algorithm for LED communication systems algorithm using LED, PD(Photodiode), and MCU(Micro Controller Unit).

Analysis on the error performance objective for turbo codes in the DVB-RCS system (DVB-RCS 시스템에서 터보 부호의 오류성능 목표 분석)

  • Yeo, Seong-Mun;Kim, Su-Yeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.51-55
    • /
    • 2006
  • Digital satellite communication systems are usually integrated with terrestrial systems to provide various services. In these cases, they should satisfy the performance objectives defined by the terrestrial systems. Recommendation ITU-R S.1062 specifies the error performance objectives of digital satellite communication systems operating below 15 GHz. The error performance are given in terms of bit error probability divided by the number of the average bit errors in the burst ($\alpha$). This paper presents a theoretical method to estimate $\alpha$ that is a very important parameter in the satellite communication systems to analyze the error performance objectives. We show performance estimation result of DVB-RCS turbo code using the presented method, and verify them by comparing to the simulation results.

  • PDF

Rain Attenuation and Doppler Shift Compensation for Satellite Communications

  • KimShin, Soo-Young;Lim, Kwang-Jae;Choi, Kwon-Hue;Kang, Kun-Seok
    • ETRI Journal
    • /
    • v.24 no.1
    • /
    • pp.31-42
    • /
    • 2002
  • In high-speed multimedia satellite communication systems, it is essential to provide high-quality, economical services by using efficient transmission schemes which can overcome channel impairments appearing in the satellite link. This paper introduces techniques to compensate for rain attenuation and the Doppler shift in the satellite communication link. An adaptive transmission technique with a control algorithm to adaptively allocate transmission schemes is used as a countermeasure to rain attenuation. We introduce a new rain attenuation modeling technique for estimating system performance and propose a novel Doppler shift compensation algorithm with reduced hardware complexity. Extensive simulation results show that the proposed algorithm can provide greatly enhanced performance compared to conventional algorithms. Simulation software and hardware which incorporate the proposed techniques are also demonstrated.

  • PDF

Survey on Navigation Satellite System and Technologies (위성항법 시스템 및 기술 동향)

  • Lee, S.;Ryu, J.G.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.61-71
    • /
    • 2021
  • Navigation satellite systems (GPS, GLONASS etc.) provide three main services, i.e., positioning for location based services, navigation for multi-modal transportation services, and timing for communication and critical infrastructure services. They were started as military systems but were extended to civil service. Navigation satellite navigation system began with GPS in the USA and GLONASS in Russia at nearly the same time. Indian NavIC and Chines BDS announced their FOCs in 2016 and 2020, respectively and European Galileo and Japanese QZSS are catching up others. In these days, Navigation Satellite System, Positioning, Navigation, and Timing services are part of our daily life very closely. They are required for autonomous driving car, Unmanned vehicles like UAV, UGV, and UMV, 5G/6G telecommunications, world financial system, power system, survey, agriculture, and so on. The services among navigation satellite systems are very competitive and also cooperative one another. This article describes the status of these systems and evolution in the technical and service senses, which may be helpful for planning korea positioning system(KPS).

A Study on the Tracking Antenna System for Satellite Communication Using Embedded Controller

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.413-416
    • /
    • 2004
  • The tracking antenna system must be always pointed to a satellite for data link among moving vehicles. Especially, for an antenna mounted on a moving vehicle, it needs the stabilized the antenna system. So, software and hardware, signal processing of motion detection sensors, real-time processing of vehicle dynamics, trajectory estimation of satellite, antenna servo mechanism, and tracking algorithm, are unified in the antenna system. The purpose of this paper is to design the embedded tracking antenna control system for satellite communication. The embedded OS(Operating System) based stabilization and tracking algorithm was implemented. The performance of the designed embedded control system was verified by the real satellite communication test.

  • PDF

Performance Enhancement of Spread Spectrum LEO Satellite communication System Using Constant Modulus Antenna Array

  • Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • The structure of MMSE receiver front-ended by CMA(Constant Modulus Array) array working in CDMA forward link which is applicable to LEO spread spectrum satellite communication system is proposed. By using the despreaded pilot signal of forward link as a reference signal, the CMA array can capture multi-path signals securely even in severely faded LEO satellite channel. The remaining MAI (Multiple Access Interference) is cancelled by the cascaded MMSE receiver. Besides theoretical development, through relevant computer simulation, it is proved that the proposed system shows much better BER performance than any other possible candidate systems. As a spatio-temporal receiver mounted on a mobile vehicle, the proposed system also reduces implemental cost and complexity by adopting the simplest algorithm for its spatial and temporal domain processing.

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF

Analysis of the error performance objective on Turbo code for satellite communication systems (위성통신시스템에서의 터보부호에 대한 오류성능 목표 분석)

  • Yeo, Sung-Moon;Kim, Soo-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.49-50
    • /
    • 2006
  • Digital satellite systems are usually integrated with terrestrial systems to provide various services, and in these cases they should satisfy the performance objectives defined by the terrestrial systems. Recommendation ITU-R S.1062 specifies the performance of digital satellite systems. The performance objectives were given in terms of bit error probability divided by the average number of errors per burst versus percentage of time. This paper presents theoretical method to estimate performance measure of digital satellite systems defined in Recommendation ITU-R S.1062. We show performance estimation results of duo-binary Turbo codes, and verify them by comparing to the simulation results.

  • PDF