• Title/Summary/Keyword: Satellite Altimetry

Search Result 46, Processing Time 0.024 seconds

Improved Free-air Gravity Anomalies by Satellite Altimetry

  • Kim, Jeong-Woo;Roman, Daniel-R.
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.297-305
    • /
    • 2001
  • Ocean satellite altimetry-implied free-air gravity anomalies have had the shortest wavelengths removed during the processing to generate the optimal solution between multiple radar altimeter missions. ERS-1 168day mission altimetry was residualized to a reference geoid surface generated by integrating Anderson & Knudsen’s free-air gravity anomalies for the Barents Sea. The altimetry tracks were reduced and filtered to extract the shortest wavelengths (between 4 and 111 km) from both ascending and descending tracks, respectively. These data were recombined using existing quadrant-swapping techniques in the wavenumber domain to generate a correlated, high frequency gravity field related to the local geologic sources. This added-value surface adjusted the reference free-air gravity anomalies to better reflect features in the gravity field at a wavelength related to the distance between altimetry ground tracks.

Wave height from satellite altimetry and its comparison with ECMWF product

  • Kim, Seung-Bum;Cotton, P.David
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.337-340
    • /
    • 2002
  • Monitoring of wave height is important primarily to reduce storm risks at sea and along the coast. Wave heights in recent years have increased 50% for the last 40 years, thus requiring intensive monitoring. Satellite altimetry offers a powerful tool for regular and extensive monitoring of the wave height. We extracted significant wave height (SWH) using several altimeter missions from 1987-1995 over the Northwest Pacific and compared with ECMWF reanalysis (ERA) products. For large wave heights > 2.5 m, the ERA wave heights are smaller than the altimetric ones, while for small wave heights the ERA wave heights are larger. Comparison in SWH between altimetric derivations and ERA model products shows the discrepancy of 0.46-0.21$\times$SWH(m).

  • PDF

THE CASPIAN SEA LEVEL, DYNAMICS, WIND, WAVES AND UPLIFT OF THE EARTH'S CRUST DERIVED FROM SATELLITE ALTIMETRY

  • Lebedev, S.A.;Kostianoy, A.G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.973-976
    • /
    • 2006
  • The oscillations of the Caspian Sea level represent a result of mutually related hydrometeorological processes. The change in the tendency of the mean sea level variations that occurred in the middle 1970s, when the long-term level fall was replaced by its rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of the sea level changes represent an extremely important task. The aim of this presentation is to show the experience of application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height, water dynamics, as well as of uplift of the Earth’s crust in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay. Special attention is given to estimates of the Volga River runoff derived from satellite altimetry data. The work is based on the 1992-2005 TOPEX/Poseidon (T/P) and Jason-1 (J-1) data sets.

  • PDF

OBSERVATIONS BY SATELLITE ALTIMETRY OF SHORT SURFACE WAVE ENERGY IN THE DECEMBER 2004 SUMATRA TSUNAMI

  • Gower, Jim
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.43-46
    • /
    • 2006
  • The main tsunami wave triggered by the December 2004 Sumatra tsunami was detected in the ocean south of India by satellite altimeters on Jason, Topex/Poseidon and Envisat. All three altimeters also detected shorter-wavelength (10 to 100 km), slower-propagating surface waves, spreading from the site of the earthquake. The shorter waves give additional information about the tsunami event, and can be used to better define the generating region in this, and future tsunamis. The properties of the area of shorter tsunami-generated waves may also be important in designing a future satellite-based detection system.

  • PDF

THE TATAR STRAIT SEA LEVEL SESONAL VARITIONS BY SAT-ELLITE ALTIMETRY DATA

  • Sedaeva, Olga;Romanov, Alexander;Vilyanskaya, Elena;Shevchenko, Georgy
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.844-847
    • /
    • 2006
  • In this work Topex/Poseidon altimeter data 1993 - 2002 were used. There are three altimetry tracks (one ascending and two descending) that cross Tatar Strait. The data were collected in the points of sub-satellite tracks with the step 0.25 degree. 10-years average values were calculated for each month. The seasonal sea level variations were compared with tide gauges data. The well expressed annual cycle (with maximum at July-August and the minimum at February-March) prevails in the Tartar Strait. However, the seasonal variations expressed much weakly in both the altimetry track points and Kholmsk - Nevelsk tide-gauges that locate close to La Perouse Strait because of Okhotsk Sea influence. The sea level slopes between the Sakhalin Island and the continent coasts were analyzed in different seasons. We found that sea level increases near Sakhalin coast in spring and summer that corresponds to the northward flow. In autumn, otherwise, the sea level decreases near Sakhalin Island that corresponds to southward current. This result is verified by the CTD data gathered on the standard sections. Well-expressed upwelling is observed near coastline of Sakhalin Island in fall season. This phenomenon is caused by the northerly and the northwesterly wind which are typical for cold season.

  • PDF

Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea (인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교)

  • PARK, JI-EUN;PARK, KYUNG-AE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.282-297
    • /
    • 2019
  • Detection of mesoscale oceanic eddies using satellite data can utilize various ocean parameters such as sea surface temperature (SST), chlorophyll-a pigment concentration in phytoplankton, and sea level altimetry measurements. Observation methods vary for each satellite dataset, as it is obtained using different temporal and spatial resolution, and optimized data processing. Different detection results can be derived for the same oceanic eddies; therefore, fundamental research on eddy detection using satellite data is required. In this study, we used ocean color satellite data, sea level altimetry data, and infrared SST data to detect mesoscale eddies in the East Sea and compared results from different detection methods. The sea surface current field derived from the consecutive ocean color chlorophyll-a concentration images using the maximum cross correlation coefficient and the geostrophic current field obtained from the sea level altimetry data were used to detect the mesoscale eddies in the East Sea. In order to compare the eddy detection from satellite data, the results were divided into three cases as follows: 1) the eddy was detected in both the ocean color and altimeter images simultaneously; 2) the eddy was detected from ocean color and SST images, but no eddy was detected in the altimeter data; 3) the eddy was not detected in ocean color image, while the altimeter data detected the eddy. Through these three cases, we described the difficulties with satellite altimetry data and the limitations of ocean color and infrared SST data for eddy detection. It was also emphasized that study on eddy detection and related research required an in-depth understanding of the mesoscale oceanic phenomenon and the principles of satellite observation.

INTERACTIONS WITH EDDIES IN THE UPSTREAM OF THE KUROSHIO AS SEEN BY THE HF RADAR AND ALTIMETRY DATA

  • Ichikawa, Kaoru;Tokeshi, Ryoko
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.969-972
    • /
    • 2006
  • The long-range High-Frequency (HF) ocean radar system has observed surface velocity field in the upstream of the Kuroshio north of Ishigaki Island and east of Taiwan since 2001. Applying a new method to extract geostrophic velocity component from the HF surface velocity data with the aid of satellite-born wind data, time series of daily surface geostrophic velocity field has been determined. Despite limited width of the study area of the HF radar, analysis of the sea surface height anomaly determined from the satellite altimetry data in a wider area can provide estimated dates of arrival of mesoscale eddies in the study area of the HF radar. Variations of the Kuroshio position and strength are studied in detail for these cases of interaction with mesoscale eddy, although number of occurrence of direct interaction with the Kuroshio in the study area is not statistically enough. For example, when an anticyclonic eddy approaches to the Kuroshio, the Kuroshio axis is found tend to move northward, keeping away from the approaching eddy from the east.

  • PDF

Vertical movement of Korean Peninsula and adjacent areas derived from gravity data, satellite altimetry data and GNSS data (중력자료 위성에 의한 높이, 측정 자료, GNSS자료로부터 추출한 한반도 및 주변 지역의 수직 운동)

  • Lim, Mu-Taek;Park, Yeong-Sue;Rim, Hyoung-Rae;Koo, Sung-Bon;Kwak, Byung-Wook
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.113-118
    • /
    • 2009
  • An uplift or a subsidence of a wide area can be derived from change of gravity value, change of geoid, change of heights at measurement points etc. In the past decade, 1) the absolute gravity value acquired at a point in Daejeon decreased, 2) the geoid height on the Yellow Sea Area derived from satellite altimetry data increased, 3) the height of the southern part of Korean Peninsula increased. By synthesizing these, we can interpret that the wide area including the southern part of Korean Peninsula and the Yellow Sea is uplifting with the velocity of about 2 mm/yr.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Geostrophic Velocities Derived from Satellite Altimetry in the Sea South of Japan

  • Kim, Seung-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.243-253
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation coefficient of 0.55 to 0.74. The accuracy of time-mean velocity ranges from 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously for other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently and thus provides unfavorable environment for the performance of the Gaussian jet model.