• Title/Summary/Keyword: Sap analysis

Search Result 281, Processing Time 0.026 seconds

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.

Actual Status of School Dietitians' Recognition and Use of Superior Agricultural Products in Daegu (대구지역 학교급식 영양(교)사의 우수농산물에 대한 인식 및 적용 실태)

  • Jang, Jin-A;Ahn, Sun-Woo;Choi, Mi-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.17 no.3
    • /
    • pp.312-320
    • /
    • 2012
  • The purpose of this study was to investigate the perception of the school dietitian on superior agricultural products (SAP) and the status of using superior agricultural products in school meals. Questionnaires were distributed to 185 school dietitians after face to face interview, and a total of 181 responses were used for analysis. 82.3% of the respondents were using SAPs in school meals and there was a significant difference between elementary school (95.1%), middle school (76.8%) and high school (66.7%) dietitians (p < 0.001). 85.2% of the dietitians, who were using SAP, were purchasing SAPs through electronic bidding, and the main reason of not using SAPs was the higher price of SAPs than that of general agricultural products. The good agricultural practices (GAP) product was considered the most appropriate agricultural products for school meals by the majority of respondents (66.9%), and organic products was the next (13.3%). In addition, the most important selection criterion for a SAP perceived by school dietitians was safety (58.0%), and the main reason of using SAPs in school meals, when two choices were allowed, was 'to provide healthful food to children' (98.9%). The major barriers to using SAPs in school meals (two choices were allowed) were 'too expensive' (73.5%) and 'unstable supply' (32.6). In conclusion, it was suggested that there should be an improvement in SAP supply and management systems to increase the use of SAPs in school meals.

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.

Influence of Gusset Plate Connection on Seismic Performance of Braced Frame (거셋플레이트 연결부가 가새골조의 내진 성능에 미치는 영향)

  • Jung, A-Yeon;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.87-94
    • /
    • 2021
  • The purpose of this paper is to improve the inappropriate analysis results when the end of the brace on braced frame is applied as pinned connection in practice. The stiffness of the gusset plate connection on the braced frame has the amount of between pinned and rigid connection, and the analysis model that applies the stiffness of the connection must be used for accurate performance evaluation. In this study, the stiffness of the gusset plate designed by the balanced design procedure are quantified, and applied to the analysis model to simulate the gusset plate connection. The proposed model was verified through nonlinear static analysis (pushover analysis) of SAP2000. The effect of the connection on the seismic performance of the braced frame was analyzed by comparing the proposed model and pinned model. As a result, it was confirmed that the performance of the braced frame was evaluated conservatively in practice, and the ductility was overestimated. Therefore, it is important to consider the connection for accurate and economical performance evaluation.

Statistical Analysis of the MSE for the MDPSAP Adaptive Filter (MPDSAP 적응필터를 위한 MSE의 통계적 해석)

  • Kim, Young-min;Choi, Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.883-887
    • /
    • 2009
  • This paper presents a statistical analysis of the MSE of adaptation for the MPDSAP (Maximally polyphase decomposed Subband Affine Projection) algorithm for the an autoregressive (AR) inputs with P order. In subband structure, the Affine Projection (AP) algorithm is transformed to the Normalized Least Mean Square (NLMS) algorithm by applying the polyphase decomposition and the noble identity to the adaptive filter. And also, AR input can be pre-whitened by subband filtering with the Orthonormal Analysis Filters(OAF). In the subband structure, the pre-whitening of the AR(P) inputs provides simple and valid approximations for a statistical analysis of the MSE behaviors for the SAP adaptive filter.

  • PDF

Analysis of Water Use Strategies of Two Co-occurring Mature Tree Species, Pinus densiflora and Quercus serrata (생육공간을 공유하는 소나무와 졸참나무의 수분 이용 전략 비교 분석)

  • Lee, Kiwoong;Lee, Bora;Cho, NangHyun;Lim, Jong-Hwan;Kim, Eun-Sook
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.385-393
    • /
    • 2022
  • The study was carried out in Pocheon-si, Gyeonggi-do from March to December in 2019 to compare and analyze the water use strategies of two co-occurring tree species, Pinus densiflora and Quercus serrata, both native and dominant in Korea's forest ecosystems. Through seasonal changes, we measured environmental variables such as air temperature, relative humidity, precipitation, net radiation, and soil water content. Sap flow densities of P. densiflora (n = 6) and Q. serrata (n = 3) were measured, along with environmental variables. The maximum sa pflow density for Q. serrata almost doubled that of P. densiflora during the growing season, while the maximum sap flow densities in both Q. serrata and P. densiflora peaked in September and August, respectively. Net radiation and vapor pressure deficit, but not air temperature, were the major environmental variables significantly affecting sap flow density. Analysis of hysteresis revealed that P. densiflora exhibited isohydric behavior, while Q. serrata showed anisohydric behavior. Analysis of crown conductance revealed similar trends as sap flow density, i.e., the crown conductance of Q. serrata was twice that of P. densiflora during the growing period. The study compared and analyzed the water use strategies between two co-occurring species. To better understand the underlying mechanisms of water use, more research on both physiological and morphological traits are needed.

Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Behavior in Sapsaree Dog (Canis familiaris)

  • Ha, J.H.;Alama, M.;Lee, D.H.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.936-942
    • /
    • 2015
  • The purpose of this study was to characterize genetic architecture of behavior patterns in Sapsaree dogs. The breed population (n=8,256) has been constructed since 1990 over 12 generations and managed at the Sapsaree Breeding Research Institute, Gyeongsan, Korea. Seven behavioral traits were investigated for 882 individuals. The traits were classified as a quantitative or a categorical group, and heritabilities ($h^2$) and variance components were estimated under the Animal model using ASREML 2.0 software program. In general, the $h^2$ estimates of the traits ranged between 0.00 and 0.16. Strong genetic ($r_G$) and phenotypic ($r_P$) correlations were observed between nerve stability, affability and adaptability, i.e. 0.9 to 0.94 and 0.46 to 0.68, respectively. To detect significant single nucleotide polymorphism (SNP) for the behavioral traits, a total of 134 and 60 samples were genotyped using the Illumina 22K CanineSNP20 and 170K CanineHD bead chips, respectively. Two datasets comprising 60 (Sap60) and 183 (Sap183) samples were analyzed, respectively, of which the latter was based on the SNPs that were embedded on both the 22K and 170K chips. To perform genome-wide association analysis, each SNP was considered with the residuals of each phenotype that were adjusted for sex and year of birth as fixed effects. A least squares based single marker regression analysis was followed by a stepwise regression procedure for the significant SNPs (p<0.01), to determine a best set of SNPs for each trait. A total of 41 SNPs were detected with the Sap183 samples for the behavior traits. The significant SNPs need to be verified using other samples, so as to be utilized to improve behavior traits via marker-assisted selection in the Sapsaree population.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Numerical Analysis of Pile-Soil Interaction under Axial and Lateral Loads

  • Khodair, Yasser;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.239-249
    • /
    • 2014
  • In this paper, the analysis of a numerical study of pile-soil interaction subjected to axial and lateral loads is presented. An analysis of the composite pile-soil system was performed using the finite difference (FD) software LPILE. Two three dimensional, finite element (FE) models of pile-soil interaction have been developed using Abaqus/Cae and SAP2000 to study the effect of lateral loading on pile embedded in clay. A lateral displacement of 2 cm was applied to the top of the pile, which is embedded into the concrete pile cap, while maintaining a zero slope in a guided fixation. A comparison between the bending moments and lateral displacements along the depth of the pile obtained from the FD solutions and FE was performed. A parametric study was conducted to study the effect of crucial design parameters such as the soil's modulus of elasticity, radius of the soil surrounding the pile in Abaqus/Cae, and the number of springs in SAP2000. A close correlation is found between the results obtained by the FE models and the FD solution. The results indicated that increasing the amount of clay surrounding the piles reduces the induced bending moments and lateral displacements in the piles and hence increases its capacity to resist lateral loading.