• Title/Summary/Keyword: Sandwich core

Search Result 516, Processing Time 0.023 seconds

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

Introduction of Efficient FE-analysis Method Using Virtual Equivalent Projected Model (VEPM) for Metallic Sandwich Plates with Pyramidal Truss Cores (가상등가투영형상을 이용하여 피라미드형 트러스 코어를 구비한 금속샌드위치 판재의 효율적 해석기법 제안)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.262-265
    • /
    • 2007
  • Metallic sandwich plates constructed of two face sheets and low relative density cores have lightweight characteristics and various static and dynamic load bearing functions. To predict the formability and performance of these structured materials, a computationally efficient FE-analysis method incorporating virtual equivalent projected model has been newly introduced for analysis of metallic sandwich plates. Two dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries including anisotropic stiffness, yield strength and linear hardening function. The projected shapes and virtual properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of 3D pyramidal truss core.

  • PDF

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

  • Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.35-48
    • /
    • 2018
  • In this paper, the response of a sandwich cylindrical shell over any sort of boundary conditions and under a general distributed static loading is investigated. The faces and the core are made of some isotropic materials. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. For the core material it is assumed to be thick and the in-plane stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using harmonic differential quadrature method (HDQM) the equations are solved for deformation components. The obtained results primarily are compared against finite element results. Then, the effects of changing different parameters on the stress and displacement components of sandwich cylindrical shells are investigated.

A Structural Analysis of Sandwich Plate with Unsymmetrical FRP Thick Faces (두껍고 비대칭인 FRP면재를 갖는 Sandwich 평판의 구조해석)

  • Ik-Tai Kim;Ki-Sung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.132-140
    • /
    • 1995
  • The structural behavior of sandwich plates with unsymmetricaly thick faces are analysed using Raleigh-Ritz Energy method by comparing the bending stresses, shear stresses, local bending stresses, membrane stresses of skin and core materials including local bending effect. As for sandwich materials, the combination of two types of face materials and three types of core materials are used in the analysis.

  • PDF

Vibration Analysis of Damped Sandwich Beam Using Finite Element Method (유한요소법을 이용한 샌드위치형 감쇠 보구조물의 진동해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Shin, Joon-Yub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.978-981
    • /
    • 2005
  • The vibration analysis of damped sandwich beam is conducted using finite element method. The equation of motion presented by Mead and Markus is used to formulate FEM. Also as the thickness of the core in the damped sandwich beam goes to zero, conventional beam theory based on the transformed-section method and the equation of Mead and Markus are compared. According to the change of thickness and loss factor of the core, the forced frequency response of beam is calculated and discussed. And then using the half-power band width method, the damping ratio of each mode is calculated and discussed about each case.

  • PDF

Modal Analysis of Sandwich Plate Structure Considering Buckling (좌굴을 고려한 샌드위치형 판 구조물의 모드해석)

  • Han, Geun-Jo;Ahn, Chan-Woo;Ahn, Seong-Chan;Hong, Do-Kwan;Han, Dong-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.104-108
    • /
    • 2002
  • Sandwich plate structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. In this paper, the mechanical behavior of sandwich plate structure with honeycomb core considering buckling is investigated in detail. The focus of the analysis is to evaluate strength and stiffness of the plate structure with critical stress, natural frequency, and mode shapes. The results of this investigation are obtained from detailed finite element analysis for various parameters, such as length, height ratio, and thickness ratio of honeycomb core.

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

Modal Analysis of Sandwich Plate Structure Considering Bucking (좌굴을 고려한 샌드위치형 판 구조물의 모드해석)

  • 한근조;안찬우;안성찬;홍도관;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.702-705
    • /
    • 1997
  • Sandwich plate structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. In this paper, the mechanical behavior of sandwich plate structure with honeycomb core considering buckling is investigated in detail. The focus of the analysis is to evaluate strength and stiffness of the plate structure with critical stress, natural frequency, and mode shapes. The results of this investigation are obtained from detailed finite element analysis for various parameters, such as length, height ratio, and thickness ratio of honeycomb core

  • PDF

Orthotropic sandwich plates with interlayer slip and under edgewise loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • An elasticity solution for sandwich plates assembled with non-rigid bonding and subjected to edgewise loads is presented. The solution satisfies the equilibrium equations of the face and core elements, the compatibility equations of stresses and strains at the interfaces, and the boundary conditions. To investigate the effects of bonding stiffnesses on the responses of sandwich plates, numerical evaluations are conducted. The results obtained have shown that the bonding stiffness, up to a certain level, has a strong effect on the plate mechanical response. Beyond this level, the usual assumption of perfect bonding used in classical theories is quite acceptable. An answer to what constitutes perfect bonding is found in terms of the ratio of the core stiffness to the bonding stiffness.