• Title/Summary/Keyword: Sandwich composite structure

Search Result 271, Processing Time 0.027 seconds

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF

High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb (유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계)

  • You C.S.;Hwang W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

Structural Design on Joint Component of Composite Wing of WIG Craft

  • Lee, Younggyu;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-3
    • /
    • 2021
  • This study proposed a specific preliminary structural design procedure of the main wing for a small scale WIG vehicle to meet the target weight of the system requirement. The high stiffness and strength Carbon-Epoxy material was used for lightness, and the foam sandwich type structure at the upper skin and the spar webs was adopted for improvement of structural stability. After structural design, wing joint part was designed. Through investigation on structural design result, design modification was performed. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed.

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.123-133
    • /
    • 2018
  • Steel-concrete-steel (SCS) sandwich composite structure with corrugated-strip connectors (CSC) has the potential to be used in buildings and offshore structures. In this structure, CSCs are used to bond steel face plates and concrete. To overcome executive problems, in the proposed system by the authors, shear connectors are one end welded as double skin composites. Hence, this system double skin with corrugated-strip connectors (DSCS) is named. In this paper, finite element model (FEM) of push-out test was presented for the basic component of DSCS. ABAQUS/Explicit solver in ABAQUS was used due to the geometrical complexity of the model, especially in the interaction of the shear connectors with concrete. In order that the explicit analysis has a quasi-static behavior with a proper approximation, the kinetic energy (ALLKE) did not exceed 5% to 10% of the internal energy (ALLIE) using mass-scaling. The FE analysis (FEA) was validated against those from the push-out tests in the previous work of the authors published in this journal. By comparing load-slip curves and failure modes, FEMs with suitable analysis speed were consistent with test results.

Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method

  • Aydin, Muhammet R.;Gundogdu, Omer
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.461-470
    • /
    • 2018
  • In this study, the effect of polyurethane foam filler, in addition to surface layer thickness and core material thickness, on vibration characteristics of sandwich structures was investigated. The manufacturing process was carried out according to the Taguchi method. The natural frequencies and damping ratios of the produced samples were determined experimentally for fixed-free boundary conditions. In addition, solid models were developed for test samples and their finite element analyses were performed with $ANSYS^{(R)}$ to obtain their natural frequencies and mode shapes. An acceptably good agreement was found with the comparison of experimental results with the numerically obtained ones. The most effective parameters on the vibration characteristics of the sandwich structure were determined by the Taguchi method.

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

Parametric study on design of sandwich structures composing of fibre reinfoced composites, polymer foam and resin concrete (섬유강화 복합재료, 고분자 포움 및 레진 콘크리트로 구성된 샌드위치 구조 설계를 위한 파라메트릭 연구)

  • Kim D.I.;Chang S.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure for machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance both directional bending stiffnesses at the same time. From the results optimal configuration and materials for high precesion machine tools are proposed.

  • PDF

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh;Juin-Hwee Tan;Shukur Abu Hassan;Mat Uzir Wahit
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.755-764
    • /
    • 2023
  • The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

Compressive Strength Restoration Evaluation of Sandwich Composite Laminates Repaired by Scarf Method (패치 보수된 샌드위치 복합재 적층판의 압축시 강도회복 평가)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Kim, Seung-Cheol;Seo, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.110-114
    • /
    • 2009
  • This study is for the evaluation of compressive strength restoration of sandwich composite laminates with adhesively bonded scarf patches. It was used in this study that the sandwich composite laminate with an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces was applied to the car body structure for Korean tiling train. In this study, it was damaged by low velocity impact and repaired using scarf repair method. Then, the compressive strength restoration of assessed by compressive after impact (CAI) test. From the test, it could be known that the compressive strength was restored up to 72% by only scarf repair method and 91% applied by an extra ply over the undamaged one.