• Title/Summary/Keyword: Sandwich composite

Search Result 582, Processing Time 0.024 seconds

Design and Impact Testing of Cylindrical Composite Antenna Structures (원통형 복합재료 안테나의 설계 및 충격 실험에 관한 연구)

  • Lee, Sang-Min;Cho, Sang-Hyun;Lee, Chang-Woo;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • Microstrip antennas are low profile, are conformable to planar and nonplanar surfaces, are simple and inexpensive to manufacture, mechanically robust when mounted on rigid surfaces and are compatible with MMIC(Monolithic microwave integrated circuit) designs; they have been used in diverse communication systems. The rectangular microstrip patch antenna is designed for a central frequency of 12.5 GHz, and the final product is a $4{\times}1$ array antenna with curvature radius of 200 mm. The microstrip antenna is embedded in a sandwich structure which consists of skin and core material. After impact, the performance of damaged antenna is estimated by measuring the return loss and radiation pattern. The antenna performance was not affected by this impact damage.

Static and modal analysis of bio-inspired laminated composite shells using numerical simulation

  • Faisal Baakeel;Mohamed A. Eltaher;Muhammad Adnan Basha;Ammar Melibari;Alaa A. Abdelrhman
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.347-368
    • /
    • 2023
  • In the first part of this study, a numerical simulation model was developed using the mechanical APDL software to validate the results of the 3D-elastisity theory on the laminated sandwich plate developed by Panago. The numerical simulation model showed a good agreement to the results of Pagano's theory in terms of deflection, normal stresses, and shear stresses. In the second part of this study, the developed numerical simulation model was used to define different plates dimensions and fibers layup orientations to examine the load response in terms of deflection and stresses. Further analysis was implemented on the natural frequencies of laminated xxx plates of the plates. The layup configurations include Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), the linear bio-inspired known as Linear-Helicoidal (LH), and the nonlinear bio-inspired known as Fibonacci-Helicoidal (FH). The following numerical simulation model can be used for the design and study of novel, sophisticated bio-inspired composite structures in a variety of configurations subjected to sinusoidal or constant loads.

Investigation on Strength Recovery after Repairing Impact Damaged Aircraft Composite Laminate (항공기 복합재 라미네이트의 충격 손상 부위 유지 보수 후 강도 복원 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Shin, Sang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.862-868
    • /
    • 2010
  • Development of a small scale aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all the composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has s disadvantage which is very weak against impact due to foreign object damages. Therefore the aim of this study is focusing on the damage evaluation and repair techniques of the aircraft composite structure. The damages of composite laminates including the carbon/epoxy UD laminate and the carbon/epoxy fabric face sheets-honeycomb core sandwich laminate were simulated by a drop weight type impact test equipment and the damaged specimen were repaired using the external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

A STUDY ON THE BOND STRENGTHS BETWEEN GLASS IONOMER CEMENT BASES AND COMPOSITE RESINS (글래스 아이오노머 이장재와 복합레진간의 결합강도에 관한 연구)

  • Kim, Min-Hee;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.520-527
    • /
    • 1999
  • For the purpose of providing some suggestions in selection of filling materials used in 'sandwich technique', the bond strengths between glass ionomer cement bases and composite resins were investigated and compared. For lining materials, 'Vitrebond' and 'Ketac-fil' were used. Using these two as bases, 10 of each following resins were built up on the top ; Z-100 (light curing resin) Clear-fil (chemical curing resin), Bis-core (dual cure resin), Dyract (compomer), therfore 10 specimens of each group and total of 80 specimens were made. After storing specimens in $37^{\circ}C$ deionized water for 24 hours, the shear bond strengths were measured under universal testing machine with 50 kg of full load scale and 1mm/min of cross-head speed and obtained the results as follows : 1. Over Vitrebond base, Z-100 showed the lowest bond strength but the other three did not show any difference in bond strength. 2. Over Ketac-fil base, Clear-fil showed the highest bond strength followed by Dyract, Bis-core, and Z-100 showed the lowest bond strengths. 3. Whereas Clear-fil showed the similar bond strengths on the Vitrebond base as other resins, it showed the highest bond strength on Ketac-fil base, which showed some difference in bond strength by differing GIC bases. 4. The bond strengths between base materials and composite resin showed a stronger resin-dependence tendency in cases with Ketac-fil bases rather than with Vitrebond bases.

  • PDF

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

Tests on explosion-resisting properties of high-performance equal-sized-aggregate concrete composite sandwich plates

  • Yizhong Tan;Songlin Yue;Gan Li;Chao Li;Yihao Cheng;Wei Dai;Bo Zhang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.297-304
    • /
    • 2023
  • Targeted introduction of explosion-resisting and energy-absorbing materials and optimization of explosion-resisting composite structural styles in underground engineering are the most important measures for modern engineering protection. They could also improve the survivability of underground engineering in wartime. In order to test explosion-resisting and energy-absorbing effects of high-performance equal-sized-aggregate (HPESA) concrete, the explosive loading tests were conducted on HPESA concrete composite plates by field simple explosion craters. Time-history curves of the explosion pressure at the interfaces were obtained under six conditions with different explosion ranges and different thicknesses of the HPESA concrete plate. Test results show that under the same explosion range, composite plate structures with different thicknesses of the HPESA concrete plate differ significantly in terms of the wave-absorbing ability. Under the three thicknesses in the tests, the wave-absorbing ability is enhanced with the growing thickness and the maximum pressure attenuation index reaches 83.4%. The energy attenuation coefficient of the HPESA concrete plate under different conditions was regressively fitted. The natural logarithm relations between the interlayer plate thickness and the energy attenuation coefficient under the two explosion ranges were attained.

Molding Quality Evaluation on Composite Laminate Panel for Railway Vehicle through Cure Monitoring using FBG Sensors (광섬유 FBG 센서기반 성형 모니터링을 통한 철도 차량용 복합재 내장재 패널의 성형 품질 평가)

  • Juyeop Park;Donghoon Kang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • Recently, in the field of railway vehicles, interest in the use of composite materials for weight reduction and transportation efficiency is increasing. Accordingly, research and commercialization development to apply composite materials to various vehicle parts are being actively conducted, and evaluation is conducted centering on post-measurement such as mechanical performance evaluation of finished products to verify quality when composite materials are applied. However, the analysis of heat and stress generated during the molding process of composite materials, which are factors that greatly affect manufacturing quality, is insufficient. Therefore, in this study, in order to verify the molding quality of composite parts for railway vehicles, the molding quality analysis was conducted for the two types of composite interior panels (laminate panel and sandwich panel) that are most actively used. To this end, temperature and strain changes were monitored during the molding process by using an FBG fiber optic sensor, which is easy to apply to the inside of the composite, and the residual strain value generated after molding was completed was measured. As a result, it was confirmed that overheating and excessive residual stress did not occur, thereby verifying the excellent molding quality of the composite interior panel for railway vehicles.

Size Effects in the Failure of Specially Orthotropic Sandwich Slab Bridges (치수효과를 고려한 특별직교이방성 샌드위치 슬래브교량의 파괴강도해석)

  • Han, Bong Koo;Lee, Yong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.333-344
    • /
    • 2004
  • In civil engineering applications, the establishment of standards and procedures for analysis, design, fabrication, construction, and quality control are essential in facilitating the economic and efficient use of composite materials. Many bridge systems, including girders. cross beams, and concrete decks, function as specially orthotropic plates. in general, the analytical solution for such complex systems is very difficult to achieve. Thus, the finite difference method is used for the analysis of the problem. The rate of tensile strength reduction due to increased size is considered. Strength reduction is necessary to ensure the safe design of building structures. This paper suggests the use of a strength-failure analysis procedure using the reduced tensile strength. A numerical study is conducted for different cases. The Tasi-Wu failure criterion for stress space is also used.