• 제목/요약/키워드: Sandwich Sheet

검색결과 107건 처리시간 0.037초

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가 (Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure)

  • 정창균;윤석준;성대용;양동열;안동규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

유한요소법을 이용한 초소성 성형/확산접합 공정해석 (Analysis of superplastic forming/diffusion bonding process using a finite element method)

  • 송재선;김용환;홍성석;강영길;이정환;권용남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.265-268
    • /
    • 2006
  • The superplastic forming/diffusion bonding is widely accepted as an advanced technique for forming complex industrial components. But the superplastic forming process requires much forming time and generates excessive thinning thickness distribution of formed part. Superplastic in materials is only achieved in a narrow range of strain-rate with optimum value unique to each material. In this study, finite element analysis for surperplastic forming/diffusion bonding (SPF/DB) processes of three-sheet and four-sheet sandwich parts. From this study, forming analysis have offered a lot of information for developing the forming process.

  • PDF

내부구조재의 설계 변수에 의한 박판 성형 공정 연구 (A Study on the Sheet Metal Forming Process to Design Parameter of Inner Structured)

  • 김형종;최두선;제태진;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.389-392
    • /
    • 2005
  • Sandwich structures, which are composed of a thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. In this paper, through the FLD analysis according to the pattern changes, we have confirmed the deformed shape and formability distribution. Also, we have fabricated the dimple press mold according to the pattern changes, and obtained the dimple inner structure the forming experiments.

  • PDF

Properties of ITO/Cu/ITO Multilayer Films for Application as Low Resistance Transparent Electrodes

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.165-168
    • /
    • 2009
  • Transparent and conducting ITO/Cu/ITO multilayered films were deposited by magnetron sputtering on unheated polycarbonate (PC) substrates. The thickness of the Cu intermediate film was varied from 5 to 20 nm. Changes in the microstructure and optoelectrical properties of ITO/Cu/ITO films were investigated with respect to the thickness of the Cu intermediated layer. The optoelectrical properties of the films were significantly influenced by the thickness of the Cu interlayer. The sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm films had a sheet resistance of $36{\Omega}$/Sq. and an optical transmittance of 67% (contain substrate) at a wavelength of 550 nm, while the ITO 50 nm/Cu 20 nm/ITO 30 nm films had a sheet resistance of $70{\Omega}$/Sq. and an optical transmittance of 36%. The electrical and optical properties of ITO/Cu/ITO films were determined mainly by the Cu film properties. From the figure of merit, it is concluded that the ITO/Cu/ITO films with a 5 nm Cu interlayer showed the better performance in transparent conducting electrode applications than the conventional ITO films.

미세 딤플 내부구조재 제작을 위한 롤 성형기술 연구 (A Study on Roll Forming Technology for Inner Structure Plate with Micro Dimple)

  • 제태진;김형종;김보환;허병우;성대용;양동열;최두선
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.326-332
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we made a roll forming machine which progressive forming possible and force measurement for a roll forming of the sheet metal forming. And we designed a roll molding that arrayed of embossing size 3mm in diameter fabricate micro dimple inner structure plate. We carried out forming experiment such as array change and thickness to sts304 sheet. Ultimately, this research developed inner structure plate of high stiffness.

적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별 (Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet)

  • 오세희;한재흥;오일권;신원호;김천곤;이인;박종흥
    • Composites Research
    • /
    • 제14권4호
    • /
    • pp.8-14
    • /
    • 2001
  • 위성체 시스템은 발사 과정중에 매우 극심한 하중상태에 놓이게 된다. 따라서 위성체 시스템의 구조적 안정성을 보장하기 위하여 발사 과정중에 시스템에 발생할 수 있는 모든 하중상태에 대해서 위성체 시스템 모든 부분의 안전율 (M.S. : Margin of Safety)는 양의 값이 되어야 한다. 본 논문은 위성체 안테나 시스템의 동적 특성을 분석하기 위하여 모드해석을 수행하였고, 준정적 하중이 시스템에 부과될 때 응력해석 결과를 나타내었다. 위성체 시스템 제작에 사용된 샌드 위치 구조물에 대한 파손경향을 조사하였고, 샌드위치 구조물의 외피를 일방향 프리프레그를 다양한 각도로 적층하여 구성하였을 때 시스템의 거동변화를 관찰하였다.

  • PDF

탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구 (A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage)

  • 공창덕;박현범;이승현
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.24-29
    • /
    • 2009
  • 본 연구에서는 알루미늄 허니컴 코어와 카본 면재가 적용된 샌드위치 복합재 구조에 대해 준정적 압입 손상 이후의 잔류 강도 평가에 대한 연구를 수행하였다. 3점 굽힘 시험과 압축 시험을 통해 시편의 강도를 확인하고 시편에 손상을 모사하기 위하여 준정적 압입 손상을 가하였다. 손상된 시편을 손상 전 시편과 동일한 시험을 통해 손상 전의 강도와 비교하였다. 압입 손상 이후 압축 강도와 굽힘 강도는 압입 깊이의 증가에 따라 강도가 감소하였고 손상 단계에 따른 잔류 강도 정도를 확인하였다.

The Physical, Mechanical, and Sound Absorption Properties of Sandwich Particleboard (SPb)

  • ISWANTO, Apri Heri;HAKIM, Arif Rahman;AZHAR, Irawati;WIRJOSENTONO, Basuki;PRABUNINGRUM, Dita Sari
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.32-40
    • /
    • 2020
  • While the utilization of wood as a raw material in related industries has been increasing with the population increasing, the availability of wood from natural forests has continued to decline. An alternative to this situation is the manufacture of particleboard from non-wood lignocellulose materials through the modification of sandwich particleboard (SPb) using bamboo strands as reinforcement. In this study, strandsof belangke bamboo (Gigantochloa pruriens W) and tali bamboo (Gigantochloa apus) were utilized. The non-wood particles included sugar palm fibers, cornstalk, and sugarcane bagasse. The board was made in a three-layer composition of the face, back, and core in a ratio of 1: 2: 1. The binder used was 8% isocyanate resin. The sheet was pressed at a temperature of 160℃ for 5 min under a pressure of 3.0 N/㎟. Testing included physical and mechanical properties based on the JIS A 5908 (2003) standard, while acoustic testing was based on ISO 11654 (1997) standards. The results showed that using bamboo strands as reinforcement has an effect on the mechanical and physical properties of SPb. Almost all the types of boards met the JIS A 5908 (2003) standards, with the exception of thickness swelling (TS) and internal bond (IB) parameters. Based on the thickness swelling parameter, the C-type board exhibited the best properties. Overall, the B-type board thatused a belangke bamboo strand for the surface and sugarcane bagasse as the core underwent the best treatment. Based on the acoustical parameter, boards using a tali bamboo strand for the surface and sugar palm fiber as the core (E-type board) exhibited good sound absorption properties.