• 제목/요약/키워드: Sandwich Plates

검색결과 226건 처리시간 0.021초

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Tests on explosion-resisting properties of high-performance equal-sized-aggregate concrete composite sandwich plates

  • Yizhong Tan;Songlin Yue;Gan Li;Chao Li;Yihao Cheng;Wei Dai;Bo Zhang
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.297-304
    • /
    • 2023
  • Targeted introduction of explosion-resisting and energy-absorbing materials and optimization of explosion-resisting composite structural styles in underground engineering are the most important measures for modern engineering protection. They could also improve the survivability of underground engineering in wartime. In order to test explosion-resisting and energy-absorbing effects of high-performance equal-sized-aggregate (HPESA) concrete, the explosive loading tests were conducted on HPESA concrete composite plates by field simple explosion craters. Time-history curves of the explosion pressure at the interfaces were obtained under six conditions with different explosion ranges and different thicknesses of the HPESA concrete plate. Test results show that under the same explosion range, composite plate structures with different thicknesses of the HPESA concrete plate differ significantly in terms of the wave-absorbing ability. Under the three thicknesses in the tests, the wave-absorbing ability is enhanced with the growing thickness and the maximum pressure attenuation index reaches 83.4%. The energy attenuation coefficient of the HPESA concrete plate under different conditions was regressively fitted. The natural logarithm relations between the interlayer plate thickness and the energy attenuation coefficient under the two explosion ranges were attained.

치수효과를 고려한 특별직교이방성 샌드위치 슬래브교량의 파괴강도해석 (Size Effects in the Failure of Specially Orthotropic Sandwich Slab Bridges)

  • 한봉구;이용호
    • 한국강구조학회 논문집
    • /
    • 제16권3호통권70호
    • /
    • pp.333-344
    • /
    • 2004
  • 복합재료는 건설공학 분야의 해석, 설계, 제작, 건설, 품질 제어 등에서 경제적이고 효율적인 재료로 사용될 수 있다. 많은 교량 구조물중 거더, 가로보로 이루어진 콘크리트 상판은 특별직교이방성판으로 거동한다. 이러한 경계조건을 갖는 단면 혹은 불규칙한 단면을 갖는 시스템은 해석적인 해를 구하기가 매우 어렵다. 이러한 문제에 대한 해석을 위해서 유한차분법이 이용되었다. 본 논문에서는 인장강도 감소율을 적용하여 파괴강도 해석을 수행하였다. 또한 이러한 경우에 대한 수치해석을 수행하였다. 응력영역에 대한 Tasi-Wu의 파괴기준을 적용하였다.

선박용 창의 차음성능 측정용 충진벽체 설치에 관한 실험적 고찰 (Experimental discussion on the installation of filler wall for sound insulation measurements of shipboard windows)

  • 김상렬;강현주;김현실
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.276-279
    • /
    • 2008
  • In order to measure sound transmission loss (STL) of a shipboard window of small size, a special partition is built into the test opening between two reverberation rooms and the specimen is placed in that partition. For high sound insulation, the filler wall often has multi-layered structure such as double-brick wall or buckhead structure with thick steel plate, absorptive material, and sandwich panels. This paper discusses the installation method of a multi-layered filler wall that consist of gypsum boards, lead plates, and glass wool. The experimental results of various wall structures are introduced. The comparison between the results show that the sound bridge effect plays a significant role in lowering the maximum STL of the filler wall. It is also found that the higher the sound insulation performance of the filler wall is, the more important the franking transmission through other side wall of the test facility is.

  • PDF

Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system

  • Zhou, Changlin;Zhao, Yi;Zhang, Ji;Fang, Yuan;Habibi, Mostafa
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.295-307
    • /
    • 2020
  • The vibrational characteristics of Multi-Phase Nanocomposite (MPC) reinforced annular/circular plate under initially stresses are presented using the state-space formulation based on three-dimensional elasticity theory (3D-elasticity theory) and Differential Quadrature Method (DQM). The MPC reinforced annular/circular plate is under initial lateral stress and composed of multilayers with Carbon Nanotubes (CNTs) uniformly dispersed in each layer, but its properties change layer-by-layer along the thickness direction. The State-Space based Differential Quadrature Method (SS-DQM) is presented to examine the frequency behavior of the current structure. Halpin-Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale composite. A singular point is investigated for modeling the circular plate. The CNTs are supposed to be randomly oriented and uniformly distributed through the matrix of epoxy resin. Afterward, a parametric study is done to present the effects of various types of sandwich circular/annular plates on frequency characteristics of the MPC reinforced annular/circular plate using 3D-elasticity theory.

복합재료 부품 표면에 다양한 딤플을 형성하는 성형 방법 (A Study on the Processing Technique to form Various Dimples on the Surface of Composite Parts)

  • 조치룡;변길재
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.42-47
    • /
    • 2013
  • 본 연구에서는 공기역학적 또는 열 전달에 유리한 형상인 딤플을 복합재료 제품의 표면에 다수 형성하는 경제적이고도 효과적인 성형방법을 개발하였다. 금형을 이용하여 제품의 표면에 다수의 딤플을 형성시키려면 몰드의 표면에 볼록한 반구형상을 가공하여야 하는데 이렇게 하려면 높은 금형 제작비가 소요된다. 본 연구에서는 다수의 원형 구멍이 뚫린 판재를 이용하여, 이의 표면에 복합재료 스킨을 입히면서 외부에서 압력을 가하여 딤플 형상이 표면에 자연스럽게 형성되도록 하는 방법을 개발하였다. 표면에 다수의 딤플을 갖는 복합재료는 공기저항을 줄이거나 방열효과가 필요한 고속 경기용 자동차의 외장 등으로 널리 응용 될 수 있을 것으로 사료된다.

Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution

  • Cao, Yan;Musharavati, Farayi;Baharom, Shahrizan;Talebizadehsardari, Pouyan;Sebaey, Tamer A.;Eyvazian, Arameh;Zain, Azlan Mohd
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.253-258
    • /
    • 2020
  • Vibration response in a sandwich plate with a nanocompiste core covered by magnetic layer is presented. The core is armed by functionalyy graded-carbon nanotubes (FG-CNTs) where the Mori-Tanaka law is utilized assuming agglomeration effects. The structure plate is located on elastic medium simulated by Pasternak model. The governing equations are derived based on Mindlin theory and Hamilton's principle. Utilizing diffrential quadrature method (DQM), the frequency of the structure is calculated and the effects of magnetic layer, volume percent and agglomeration of CNTs, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with considering magnetic layer, the frequency of structure is increased.

Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator

  • Amini, Amir;Mohammadimehr, M.;Faraji, A.R.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.671-686
    • /
    • 2019
  • Active control of solar panels with honeycomb core and carbon nanotube reinforced composite (CNTRC) facesheets for smart structures using piezoelectric patch sensor and actuator to reduce the amplitude of vibration is a lack of the previous study and it is the novelty of this research. Of active control elements are piezoelectric patches which act as sensors and actuators in many systems. Their low power consumption is worth mentioning. Thus, deriving a simple and efficient model of piezoelectric patch's elastic, electrical, and elastoelectric properties would be of much significance. In the present study, first, to reduce vibrations in composite plates reinforced by carbon nanotubes, motion equations were obtained by the extended rule of mixture. Second, to simulate the equations of the system, up to 36 mode shape vectors were considered so that the stress strain behavior of the panel and extent of displacement are thoroughly evaluated. Then, to have a more acceptable analysis, the effects of external disturbances (Aerodynamic forces) and lumped mass are investigated on the stability of the system. Finally, elastoelectric effects are examined in piezoelectric patches. The results of the present research can be used for micro-vibration suppression in satellites such as solar panels, space telescopes, and interferometers and also to optimize active control panel for various applications.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

새로운 형태의 강바닥판 리브에 대한 연구 (A Study on the New Type Rib of Steel Deck Plates)

  • 주석범;박종해
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.605-615
    • /
    • 2014
  • 본 연구의 목적은 파형 복부판과 허니컴 샌드위치 패널에 사용된 강판 보강 방법을 강바닥판에 적용하고, 새로운 리브와 기존 개단면 및 폐단면 리브와의 비교를 통하여 경제적인 새로운 형태의 리브를 제안하는데 있다. 새로운 리브 형태로 사다리꼴 파형, ㄹ형, 벌집형, ㅁ형 리브를 고려하고, 개단면 및 폐단면 리브와 리브 강재량을 비교한 결과, 경제성 측면에서 벌집형과 ㅁ형 리브가 좋은 결과를 나타내었으며, ㅁ형 리브가 벌집형보다 좀 더 좋음을 알 수 있었다. 실제 강바닥판에 적용 가능한 ㅁ형 리브를 만들기 위하여, 민감도 분석과 매개변수 연구를 수행하였으며, 특정 응력 조건하에서 적정한 단면을 선택할 수 있는 시스템을 구축하였다. 실 교량의 폐단면 리브와 제안한 시스템의 ㅁ형 리브의 강재량을 비교한 결과, 새로운 형태의 리브가 더 경제적임을 알 수 있었다. 따라서, ㅁ형 리브를 갖는 보강판에 대하여 본 연구에서 제안한 시스템을 이용하면 보다 더 경제적인 강바닥판을 얻을 수 있을 것으로 판단된다.