• 제목/요약/키워드: Sand-to-Aggregate Ratio(S/a)

검색결과 42건 처리시간 0.028초

콘크리트용 잔골재로서 폐기물 모래의 적용성에 관한 연구 (A Study on Application of Waste Sand as Concrete Fine Aggregate)

  • 윤장길;김효열;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술.기술논문발표회
    • /
    • pp.15-20
    • /
    • 2004
  • To the development on reusing method of the heat-source waste at Daegu Bisan dyeing-complex, this study is aimed to application of it's crushing material (hereafter waste sand) as concrete fine aggregate. The results are as follows; 1. Flow and unit weight of mortar using waste sand as concrete fine aggregate are decreased. 2. At the results of compressive strength test and bending strength test, mortar using waste sand superior to plain mortar within 80% substitute ratio of waste sand. Because increasing rate of compressive strength is similar through increasing age, waste sand performs as filler's function of no-effect with cement only. 3. At the results of concrete application test, unit weight of concrete using waste sand is similar to plain concrete and compressive strength of concrete is superior to plain likewise the results of mortar test

  • PDF

잔골재율이 육상모래를 사용한 고강도 콘크리트 특성에 미치는 영향 (The Effect of The sand/aggregate ratio on the High Strength Concrete with the Land Sand)

  • 박정준;강수태;김성욱;안정생;김경원;신운선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.329-332
    • /
    • 2008
  • 최근 들어 국내의 골재수급문제 때문에 육상모래를 많이 사용하게 되는데 이에 이 논문에서는 잔골재율(S/a) 변화를 통하여 콘크리트에 미치는 유동성과 압축강도에 미치는 영향을 파악하고 이에 플라이애쉬 사용에 따른 영향을 추가적으로 검토하여 70MPa급 고강도 콘크리트를 제조하고자 하였다. 검토결과, 잔골재율 $37{\sim}45%$ 범위에서 잔골재율이 감소할수록 유동성이 증가하였고 S/a=39%에서 최대 강도인 77MPa를 나타내 적정 잔골재율로 판단된다. 또한 플라이애쉬를 시멘트에 대해 20%까지 치환한 경우 사용량이 증가할수록 유동성이 증가하였으며 재령 28일에서 압축강도도 플라이애쉬를 사용하지 않은 경우에 대해 동등이상의 압축강도를 나타내어 시멘트에 대해 $10{\sim}15%$ 치환한 경우가 적정 치환율로 판단된다.

  • PDF

폐주물사를 혼입한 콘크리트의 최적배합설계를 위한 기초적 연구 (Preliminary Study for Optimum Mix Design of Concrete Incorporating Waste Foundry Sand)

  • 박제선;김태경
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.25-30
    • /
    • 1996
  • The waste foundry sand might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Experiments were performed with the variables of W/C ratio, S/A, Sand/Waste foundry sand ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that then W/C ratio is the most important factor to the concrete strength. The substitute of waste foundry sand up to 30% has little influence, saying that it can substitute the fine aggregate without damaging the concrete properties.

  • PDF

폐주물사를 혼입한 콘크리트의 최적 배합설계를 위한 기초적 연구 (Preliminary Study for Optimum Mix Design of Concrete Incorporation Waste Foundary Sand)

  • 백민경;이주형;김태경;윤경구;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.58-63
    • /
    • 1996
  • The waste foundry sand might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Exprements were performed with the variables of W/C ratio, S/A, Sand/Waste foundry sand ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio is the most important factor to the concrete strength. The substitute of waste foundry sand up to 30% has little influence, saying that it can substitute the fine aggregate without damaging the concrete properties.

  • PDF

고로슬래그미분말을 혼입한 고유동콘크리트에서 골재조합이 콘크리트 유동성상에 미치는 영향에 관한 실험 연구 (The Effect of Combined Aggregates on Fluidity of the High Fluid Concrete Containing GGBFS)

  • 김재훈;윤상천;지남용
    • 한국건축시공학회지
    • /
    • 제3권4호
    • /
    • pp.79-86
    • /
    • 2003
  • The purpose of study is to offer base data for high fluid concrete mix property, as grasp effect of aggregate to reach much more effect for producing high fluid concrete. For this study, there are three types of combined aggregates, river sand + river aggregate(type A), river sand + crusted aggregate(type B), washed sea sand + crushed aggregate(type C) and take a factor, water-contents, water-binder ratio and S/a. And so, we had following conclusion, resulting application-ability of high fluid mortar by K-slump tester to use a handy consistency measuring instrument. And so, we had following conclusion, resulting application-ability of high fluid concrete by K-slump tester to use a handy consistency measuring instrument. 1) In cafe of regular water binder ratio, high fluid concrete suffered much effect of combined aggregates and water binder ratio. Range of water binder ratio by combined aggregates is w/b 0.4 downward(type A and B), w/b 0.35 downward(type C). 2) Water contents to need for producing high fluid concrete is minimum 170kg/$\textrm{m}^3$ without regard to combined aggregates. 3) The effect of S/a on high fluid concrete by combined aggregates is approximately S/a 50% (type A and B), s/a 50-55% (type C). 4) Consistency measuring of high fluid concrete by K-slump tester is possible and first indication value, high fluid concrete can be produced, is 6~10.5cm.

순환골재와 폐주물사를 활용한 철근콘크리트보의 휨거동에 관한 실험연구 (Experimental Study of Flexural Behavior of Reinforced Concrete Beam Using WFS and Recycled Aggregate)

  • 김성수;이대교
    • KIEAE Journal
    • /
    • 제8권5호
    • /
    • pp.61-68
    • /
    • 2008
  • For the recycling of the resources and the preservation of the environment, this study's purpose is to measure flexural behavior of the reinforced concrete beams with the major variables like concrete strength, replacement ratio of the recycled aggregate and the waste foundry sand and the tension reinforcement ratio and to present the data of the recycled aggregate used for the structure design. The experiment on the flexural behavior resulted in the followings. The ultimate strength of recycled R/C beam was manipulated proportionate to the tension reinforcement ratio, however the strength instantly decreased after passing the ultimate load due to the destroyed concrete of the compression side. The deflection at the maximum load varied from the tension reinforcement ratio by 5.5 times. The test specimen with the tension reinforcement ratio less than $0.5{\rho}b$ showed constant curve without change in the load from the yield to the ultimate load in contrast to the distinctive plastic region where the displacement was rising. Although the strain of main tension steel with the reinforcement ratio indicate different, the design of recycled concrete member can be applied for current design code for reinforced concrete structure as the ratio of tension reinforcement district the under the reinforcement ration in a balanced strain condition.

수재사 모르터의 강도특성에 관한 연구 (An Experimental Study on the Quality of Mortar Strength using the Quenched Blast-Furnace Slag)

  • 임남기;이영도;양범석;김영회;최문식;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.207-214
    • /
    • 1997
  • Strength experimental on mortar which use Quenched Blast-Furnace Slag as aggregate was carried our for a fundamental study of application possibility of Quenched Blast-Furnace Slag as aggregate. It gives the following results. The strength of mortar use Quenched Blast-Furnace Slag is decrease as substitution rate is higher. As W/C rate increase, the strength decrease, but the strength decrease of fine aggregate rate 1:3 is lower than 1:2. The relation with fine aggregate is that the amount of fine aggregate is inversely proportional to strength. Th relation with age is proportional to strength and strength rate of going is lower than general mortar in 28 age the change of strength proportionately with W/C rate is that as W/C rate increases, th strength is drop ; it shows that it has same tendency as general mortar sand or crushed sand, but while W/C rate increase the strength is as high as general mortar. The reason can be assumed that water content per unit needed to Quenched Blast-Furance Slag is more than in case of sand. In addition, the relation with substitution rate is that the strength is the strongest at substitution rate 25% and 50% ; that is , sometimes it is higher than mortar which use sand 100%. In addition, long age strength of mortar which use Quenched Blast-Furnace Slag as aggregate is about to be studied in the last.

  • PDF

석탄가스화발전 용융슬래그의 치환율 변화에 따른 빈배합 모르타르의 특성 분석 (Properties of Lean Mixed Mortar with Various Replacement Ratio of Coal Gasification Slag)

  • 박경택;한민철;현승용
    • 한국건축시공학회지
    • /
    • 제19권5호
    • /
    • pp.391-399
    • /
    • 2019
  • 본 연구는 국내에 새롭게 도입하고자 시운전중인 석탄가스화복합발전(IGCC)에서 발생하는 석탄가스화 용융슬래그(CGS)를 국내의 부족한 골재자원으로 재활용 가능성을 검토하였다. 즉, 부족한 골재자원확보를 위해 IGCC에서 발생하는 CGS를 빈배합 모르타르인 콘크리트 2차제품용 잔골재로 활용하고자 국내 건설산업에서 가장 많이 사용되고 있는 석산의 부순 잔골재로 양호한 품질의 CSa 및 굵은 입자로 표준입도를 벗어난 CSb와 해사인 SS를 혼합한 혼합잔골재에 CGS를 0~100 % 범위에서 치환하는 것을 검토하였다. 연구결과, CSa 혹은 CSb+SS에 CGS를 25~50% 정도 치환할 경우 골재의 입도측면 및 시멘트 모르타르의 유동성 및 압축강도 측면에서 양호한 결과가 얻어져 활용가능함을 확인할 수 있었다.

쇄석과 모래 혼합다짐말뚝의 공학적 특성에 관한 연구 (A Study On The Engineering Properties of Rammed Aggregate and Sand Mixture Piers)

  • 천병식;김백영;도종남;국길근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.119-122
    • /
    • 2009
  • The gravel compaction pile method has been used as a soft foundation improvement method because bearing capacity and discharge capacity is excellent. But the discharge capacity decreased when the clogging was generated because the clay penetrate into a void of gravel compaction pile. Accordingly, the purpose of this study is to reduce the clogging generation in gravel compaction pile constructing in the soft ground and take a step to minimize a void of gravel compaction pile. And the proper mixing ratio was determined with the large scale direct shear test performed to get strength and permeability with mixing ratio of crushed stone and sand(100:0, 90:10, 85:15, 80:20, 75:25). As a result of the test, it was showed that internal friction angle was the highest at 85:15 mixing ratio of crushed stone and sand and we can make sure a tendency of internal friction angle's decrease when the mixing ratio of crushed stone and sand passed 15%.

  • PDF

수중불분리성 콘크리트의 장기강도 특성에 관한 연구 (Study on the Long age Strength Properties of Antiwashout Underwater Concrete)

  • 박세인;이동화;김종수;김명수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.113-117
    • /
    • 2000
  • The objective of this study is to find the long-age strength property and the compressive strength of age which is used as the specified concrete strength. The W/W ratio (45%, 50%, 55%, 60%) fine aggregate of useful river sand or blended sand(river sane : sea sand=1:1) were chosen as the experimental parameters. the experimental results show that pH(it means the material segregation resistance) & suspension were increased larger, so W/C become larger, and slump flow was increased as W/C increased (except W/C=60%), air-contents were decreased as W/C became increase and all of this results are satisfied with the under of 40%. The compressive strength ( a case use only river sand as fine aggregate) is showed less than the case of blended asnd. Because the unit weight of the blended sand is more heavy than the unit weigh of the river sand. The results of the case which haven been used only river sand, and the case have been used blended sand), both case have considered W/C. So it's possible to use the compressive strength of age 28 day like the case of plain concrete.

  • PDF