• 제목/요약/키워드: Sand wear resistance.

검색결과 15건 처리시간 0.017초

THREE-BODY ABRASIVE WEAR IN A BALL-CRATERING TEST WITH LARGE ABRASIVE PARTICLES

  • Stachowiak, G.B.;Stachowiak, G.W.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.199-200
    • /
    • 2002
  • Three-body abrasive wear resistance of mild steel, low alloy steel (Bisalloy) and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than $100{\mu}m$ were used to make slurries. It was found that the wear rates of all three materials tested increased with time when angular abrasive particles were used and were rather constant when round particles were used. This increase in wear rates was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Mild steel and Bisalloy were more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. More grooves were found when round particles were used or the size of the particles was decreased.

  • PDF

오일샌드 플랜트용 금속소재의 마모 특성에 대한 실험적 연구 (Experimental Study on Wear Characteristics of Metallic Materials used in Oil Sands Plants)

  • 원성재;조승현;강대경;허중식
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.31-35
    • /
    • 2017
  • Recently, international attention has been focused on the development of non-traditional energy resources such as shale gas and oil sands, due to the steep increase in the demand for natural resources. The materials incorporated in an oil gas plant module experience extreme environments, and are prone to various problem such as fracture, corrosion and abrasion due to low-temperature brittleness. In order to improve the plant life, it is necessary to perform characteristics study and performance evaluation of the materials. In particular, this paper explains the main set of materials which are most frequently used in oil sands plant project. In order to investigate wear characteristics, the authors carried out abrasive wear tests of TP 316, stainless steel and SS 400, structural rolled steel. For the analysis of the abrasive wear resistance of an oil sands plant, the authors carried out the test according to ASTM G 105 "Standard Test Method for Conducting Wet Sand/Rubber Wheel Abrasion Test" standard guidelines. The authors have derived the results from the data associated with the loss of mass with respect to wear rate. During the test, for a given wear length for 10,000 revolutions, the rotational speed and applied force of the rubber wheel were varied.

In vitro wear behavior between enamel cusp and three aesthetic restorative materials: Zirconia, porcelain, and composite resin

  • Jang, Yong-Seok;Nguyen, Thuy-Duong Thi;Ko, Young-Han;Lee, Dae-Woo;Baik, Byeong Ju;Lee, Min-Ho;Bae, Tae-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권1호
    • /
    • pp.7-15
    • /
    • 2019
  • PURPOSE. The aim of this study was to identify the effects of three aesthetic restorative materials on the wear between tooth and restoration by a pin-on-disk manner. MATERIALS AND METHODS. Six aesthetic restorative materials were used to prepare disk specimens for wear test, which were Lava Zirconia as zirconia group, Vintage MP and Cerabien ZR as veneering porcelain group, Gradia Direct microhybrid composite containing prepolymerized fillers, Filtek Z250 microhybrid composite containing zirconia glass and colloidal silica particles, and Filtek Z350 nanocomposite as composite resin group. Vertical loss of the worn cusp, change of the surface roughness of the restoration materials, and the surface topography were investigated after wear test under 9.8-N contact load. RESULTS. The porcelain groups (Vintage MP and Cerabien ZR) caused the largest vertical loss of teeth when compared with those of the composite resin and zirconia groups, and Filtek Z250 microhybrid composite results in the second-largest vertical loss of teeth. The surface of Filtek Z350 nanocomposite was deeply worn out, but visible wear on the surface of the zirconia and Gradia Direct microhybrid composite was not observed. When the zirconia surface was roughened by sand-blasting, vertical loss of teeth considerably increased when compared with that in the case of fine polished zirconia. CONCLUSION. It was identified that microhybrid composite resin containing a prepolymerized filler and zirconia with reduced surface roughness by polishing were the most desirable restorative materials among the tested materials to prevent the two-body wear between aesthetic restorative material and tooth.

전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구 (A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method)

  • 조성모;조남철;한정욱
    • 보존과학회지
    • /
    • 제34권5호
    • /
    • pp.433-442
    • /
    • 2018
  • 본 연구에서는 전통 제철법을 이용해 사철강괴와 사철강괴에 현대강을 접합한 응용강괴 2개를 생산한 후 철제 칼 3자루를 제작하여 금속학적 특성을 비교하였다. 금속현미경과 SEM-EDS 분석결과, Fe-C 합금의 아공석강이었으며, 미세한 Ferrite와 Pearlite가 전체적으로 관찰되며, 칼날에 Martensite가 관찰되었다. 비커스 경도 분석 결과, 사철강 칼(K1)이 533.38 HV, 사철-니켈탄소강 칼(K3)은 514.8 HV, 사철-탄소강 칼(K2)가 477.02 HV로 측정되었다. 마모에 의한 질량감소율은 K1이 0.058%, K3는 0.060%, K2가 0.144%로 측정되었다. 시료의 표면무늬에 대한 EPMA 분석 결과, 표면무늬는 C의 함량의 차이 혹은 화학조성에 의해 무늬가 드러난다는 것을 확인하였다. 향후 칼날의 경도 값을 올려 내마모성을 증가시키기 위해서는 열처리 공정에 대한 추가적인 연구가 필요하며, 전통 제철법으로 제작한 강괴는 니켈 탄소강과 접합하여 사용한다면 우수한 품질의 철제품을 제작할 수 있을 것이다.

치과용 지르코니아 이장재 처리에 따른 지르코니아와 도재의 전단결합강도 비교 (Shear bond strength of a layered zirconia and porcelain according to treatment of zirconia liner)

  • 서정일;박원욱;김양근
    • 대한치과기공학회지
    • /
    • 제39권1호
    • /
    • pp.43-52
    • /
    • 2017
  • Purpose: Physical and chemical properties of gold is most suitable to be restored of teeth to its original state. Recently zirconia was used instead of gold because of esthetical and intimacy of human body. Because of high strength and high abrasion resistance of zirconia, all zirconia artificial tooth lead to wear the original tooth of opposite site. To preserve this original tooth, zirconia artificial tooth covered with dental ceramic glass was used. When joining the zirconia core and dental ceramic glass, difference of their thermal expansion coefficient and wetting ability is generated the residual stress at interface lead to crack. In order to solve this problem, intermediate layer what is called zir-liner was imported to decrease the residual stress and increase the bonding strength. Methods: In this study, to identify the optimum conditions for manufacturing process, various methods to rough the surface of zirconia core were adopted, and vary the thickness of interlayer, and analyzed bond strength. Results: Bond strength of sanding specimens group showed higher than that of non-sanding specimens group, and once applied intermediate layer with sanding specimens showed highest bond strength with 28 MPa. SEM photomicrographs of zirconia cores fired at $1500^{\circ}C$ showed parallel straight lines in sanding and pockmarked surface in blasting surfaces as abrasion traces. Observation of the destruction section after shear test by SEM were carried out. Liner applied non-sanding group and non-liner applied sanding group all showed interfacial crack. Sandblasting group with non-liner showed remained dental ceramic glass on the surface of zirconia. Sandblasting group with once applied liner showed partially remained liner and dental ceramic glass on the surface of zirconia. XRD analysis revealed that sandblasting group showed higher monoclinic peaks than other specimens group and this result was due to the high collision energy for stress induced phase transformation. Conclusions: A study on the improvement of bonding strength between zirconia and dental ceramic glass steadily carried out for the future to practical use.