• 제목/요약/키워드: Sand trench

검색결과 21건 처리시간 0.029초

부패조와 모래트렌치를 이용한 소규모 오수 처리 (Small Sewage Treatment Using Septic Tank and Sand Trench)

  • 박영식
    • 한국환경보건학회지
    • /
    • 제29권1호
    • /
    • pp.28-33
    • /
    • 2003
  • This study was carried out to treat sewage using sand trench combined with septic tank process in rural areas. In order to find optimum parameters, design and operation mode was changed from Run 1 to Run 4. In order to facilitate nitrification and T-P removal, diffuser and iron plate was installed in the 3rd trench of Run 2 period. The septic tank played a role as pre-application process of sand trench system. The removal efficiencies of COD, NH$_4$-N, T-P at steady state were 94.6%, 87.9% and 54.5%, respectively. Addition of diffuser and iron plate in the 3rd trench has increased the removal efficiencies of the NIL-N and T-P. In this system, denitrification were not occurred because of the high DO.

Sand Blast를 이용한 Glass Wafer 절단 가공 최적화 (Optimization of Glass Wafer Dicing Process using Sand Blast)

  • 서원;구영보;고재용;김구성
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.30-34
    • /
    • 2009
  • A Sand blasting technology has been used to address via and trench processing of glass wafer of optic semiconductor packaging. Manufactured sand blast that is controlled by blast nozzle and servomotor so that 8" wafer processing may be available. 10mm sq test device manufactured by Dry Film Resist (DFR) pattern process on 8" glass wafer of $500{\mu}m's$ thickness. Based on particle pressure and the wafer transfer speed, etch rate, mask erosion, and vertical trench slope have been analyzed. Perfect 500 um tooling has been performed at 0.3 MPa pressure and 100 rpm wafer speed. It is particle pressure that influence in processing depth and the transfer speed did not influence.

트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석 (Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation)

  • 서성탁;허창환;김희덕;지홍기
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake

  • Gihm, Yong Sik;Kim, Sung Won;Ko, Kyoungtae;Choi, Jin-Hyuck;Bae, Hankyung;Hong, Paul S.;Lee, Yuyoung;Lee, Hoil;Jin, Kwangmin;Choi, Sung-ja;Kim, Jin Cheul;Choi, Min Seok;Lee, Seung Ryeol
    • Geosciences Journal
    • /
    • 제22권6호
    • /
    • pp.871-880
    • /
    • 2018
  • During and shortly after the 2017 Pohang Earthquake ($M_w$ 5.4), sand blows were observed around the epicenter for the first time since the beginning of instrumental seismic recording in South Korea. We carried out field surveys plus satellite and drone imagery analyses, resulting in observation of approximately 600 sand blows on Quaternary sediment cover in this area. Most were observed within 3 km of the epicenter, with the farthest being 15 km away. In order to investigate the ground's susceptibility to liquefaction, we conducted a trench study of a 30 m-long sand blow in a rice field 1 km from the earthquake epicenter. The physical characteristics of the liquified sediments (grain size, impermeable barriers, saturation, and low overburden pressure) closely matched the optimum ground conditions for liquefaction. Additionally, we found a series of soft sediment deformation structures (SSDSs) within the trench walls, such as load structures and water-escaped structures. The latter were vertically connected to sand blows on the surface, reflecting seismogenic liquefaction involving subsurface deformation during sand blow formation. This genetic linkage suggests that SSDS research would be useful for identifying prehistoric damage-inducing earthquakes ($M_w$ > 5.0) in South Korea because SSDSs have a lower formation threshold and higher preservational potential than geomorphic markers formed by surface ruptures. Thus, future combined studies of Quaternary surface faults and SSDSs are required to provide reliable paleoseismological information in Korea.

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations

  • Terzi, Niyazi U.;Erenson, C.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.447-464
    • /
    • 2015
  • Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.

지하레이더를 이용한 고고학적 유적지 탐사에 관한 연구 (A Study on Detecting of Archaeological sites Using GPR)

  • 이종출;이영대;이현재;장호식
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.513-516
    • /
    • 2003
  • This study was performed in two ways, which are 'Before' 'After' carrying out trench search through GPR which is called 'Non Destructive Geophysical' to the expected area where the remains of historic interest could be distributed within the construction site from Dae-gu to Busan. As a result, the layer containing gravel and sand has more irregular specular surface then others containing silt and clay. And, this paper, irregular specular surfaces of prominence and depression patter appeared. After performing trench search, verified that the site yield dolmens and lots of stone implements.

  • PDF

지하레이더를 이용한 유적지 위치 해석 (Positioning Analysis of Archaeological Sites Using GPR)

  • 장호식;김진수;이종출
    • 대한공간정보학회지
    • /
    • 제11권1호
    • /
    • pp.45-49
    • /
    • 2003
  • 본 연구는 대구 - 부산간 고속도로 건설구간 내에서 고고학적 유적지가 분포 예상되는 지역에서 비파괴 물리탐사방법인 GPR 탐사방법을 이용하여 트렌치 조사 이전과 이후로 나누어서 각각 실시하였다. 이 결과로 자갈 및 모래가 많은 지층은 실트 및 점토가 많은 지층보다 불규칙한 반사면들로 구성되어 있고, 일부 구간에서는 불규칙적인 요철 모양의 반사면들이 위치하는 것으로 해석되며, 이는 트렌치 조사 후에 지석묘 또는 다수의 석기가 출토된 것으로 확인되었다.

  • PDF

실내시험을 통한 송배전관로 뒤채움재용 순환골재의 열적 특성 평가 (Laboratory Experiment to Characterize Thermal Properties of Recycled-Aggregate Backfill)

  • 위지혜;홍성연;이대수;한은선;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1231-1238
    • /
    • 2010
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been increasing due to the issues of eco-friendly construction and shortage of natural aggregate resource. It is important to investigate the physical and thermal properties of the recycled aggregates that can be used as a backfill material. This study presents the thermal properties of two types of recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregate were measured using the transient hot wire method and the probe method after performing the standard compaction test using an automatic compactor. Similar to silica sand, the thermal resistivity of the recycled aggregates decreased when the water content increased. This study shows that the recycled aggregate can be a promising backfill material substituting for natural aggregate when backfilling the power transmission pipeline trench.

  • PDF

Reduction of Railway-induced Vibration using In-filled Trenches with Pipes

  • Hasheminezhad, Araz
    • International Journal of Railway
    • /
    • 제7권1호
    • /
    • pp.16-23
    • /
    • 2014
  • Reduction in railway-induced vibrations in urban areas is a very challenging task in railway transportation. Many mitigation measures can be considered and applied. Among these, a little attention has been paid to trenches. In this study, a numerical investigation on the effectiveness of in-filled trenches with pipes in reducing railway vibrations due to passing trains is presented. Particularly, a series of two-dimensional dynamic analysis was performed to model the behavior of ballasted railway track under harmonic load with ABAQUS software as a Finite Element method. In so doing, two types of in-filled trenches with pipes with steel and concrete materials have been investigated in this paper. In addition, effectiveness of pipes made of steel and concrete, filled with loose sand and clay in railway-induced vibration reduction has been assessed. The results point out that using in-filled trench with pipes does not effective a lot on railway-induced vibration reduction in comparison to other railway-induced vibration reduction methods. However, in-filled trenches with steel pipes are much more effective than in-filled trenches with concrete pipes. Moreover, filling pipes with loose sand and clay does not have any effect on vibration reduction efficiency of these in-filled trenches.