• Title/Summary/Keyword: Sand mixture

Search Result 370, Processing Time 0.03 seconds

Hydraulic Conductivity of Bentonite-Sand Mixture for a Potential Backfill Material for a High-level Radioactive Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2000
  • The hydraulic conductivities in the bentonite-sand mixtures with high density were measured, and the effects of sand content and dry density on the hydraulic conductivity were investigated. The hydraulic conductivities of the bentonite-sand mixtures with a dry density of 1.6 Mg/㎥ and 1.8 Mg/㎥ are less than 10$^{-11}$ m/s when the sand content is not higher than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivity increases rapidly At the same dry density, the logarithm of hydraulic conductivity increases linearly with increasing sand content. The hydraulic conductivity of the bentonite-sand mixture can be explained by the concept of effective clay dry density, and using this concept, the hydraulic conductivities for the mixtures with various sand contents and dry densities can be estimated.

  • PDF

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures (모래-실트 혼합토의 구속압력에 따른 전단특성 파악)

  • Kim, Uk-Gie;Zhuang, Li
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.27-38
    • /
    • 2015
  • Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.

Study on the Relationship of Strength Parameters with SCP Replacement and Mixture Ratio (모래다짐말뚝(SCP)의 치환율과 혼합율에 따른 강도정수의 상관성에 관한 연구)

  • 서주영;임종철;박이근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.733-740
    • /
    • 2003
  • When SCP (Sand Compaction Pile) is used in the improvement of soft ground, some problems like the difficulty of vertical construction and other construction difficulties due to the use of high pressure are encountered, There is a possibility that the strength parameters used in the design may be different with those obtained from the investigation of the quality variation with depth for the irregular, then the section may be not a sand pile but a combination of sand and clay. The mixture ratio concept is used, it is defined as the quantity of sand corresponding to the replacement ratio. Using this concept, the strength parameter relationship of the replacement and mixture ratio was determined. The use of these parameters in the design of SCP is most appropriate.

  • PDF

Behaviour of unsaturated tuff- calcareous sand mixture on drying-wetting and triaxial paths

  • Goual, Idriss;Goual, Mohamed Sayeh;Taibi, Said;Abou-Bekr, Nabil
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.267-284
    • /
    • 2011
  • The aim of the paper is to study the hydro-mechanical behaviour of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behaviour of the optimal mixture. Triaxial shear tests in saturated and unsaturated states at constant water content were carried out on samples initially compacted at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behaviour of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Effects of Soil Mixture and Turfgrass Species on the Development of a Carpet-type Sod for Sports Field Uses (잔디구장용 카펫형 뗏장 형성을 위한 배합토와 잔디초종)

  • Shim, Sang-Ryul;Jeong, Dae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.16-26
    • /
    • 1999
  • Five soil mixture with seven turfgrass species when placed over a plastic sheet were evaluated for influence on covering rate, visual rating, visual color and sad development. The result were as follows. 1. The last covering rate was high on sand+bark and on Kentucky bluegrass, respectively while the early covering rate was high on sand+peat and on perennial ryegrass and tall fescue. respectively. 2. Both sand and sand+sandy loam caused poor effects on the covering rate and the visual rating. 3. The early growth was good on perennial ryegrass but the covering rate and the visual rating gradually turned poor because of summer drought. 4. Visual color was high on sand+bark and on Kentucky bluegrass, respectively. 5. Covering rate, visual rating and visual color was best evaluated on Kentucky bluegrass during winter. 6. Sad was highly developed on sand+bark and sand+peat as compared with on the other soil mixture. 7. The carpet-type sad was best developed on Kentucky bluegrass.

  • PDF

Performance of Zoysia spp. and Axonopus compressus Turf on Turf-Paver Complex under Simulated Traffic

  • Chin, Siew-Wai;Ow, Lai-Fern
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Vehicular traffic on turf results in loss of green cover due to direct tearing of shoots and indirect long-term soil compaction. Protection of turfgrass crowns from wear could increase the ability of turf to recover from heavy traffic. Plastic turfpavers have been installed in trafficked areas to reduce soil compaction and to protect turfgrass crowns from wear. The objectives of this study were to evaluate traffic performance of turfgrasses (Zoysia matrella and Axonopus compressus) and soil mixture (high, medium and low sand mix) combinations on turf-paver complex. The traffic performance of turf and recovery was evaluated based on percent green cover determined by digital image analysis and spectral reflectance responses by NDVI-meter. Bulk density cores indicated significant increase in soil compaction from medium and low sand mixtures compared to high sand mixture. Higher reduction of percent green cover was observed from A. compressus (30-40%) than Z. matrella (10-20%) across soil mixtures. Both turf species displayed higher wear tolerance when established on higher sand (>50% sand) than low sand mixture. Positive turf recovery was also supported by complementary spectral responses. Establishment of Zoysia matrella turf on turfpaver complex using high sand mixture will result in improved wear tolerance.

Quality Improvement of Concrete Depending on the Mixing of Fine Aggregates Different Compositions and Grain Sizes (성분 및 입도분포가 다른 잔골재의 혼합에 의한 콘크리트의 품질향상)

  • Kim, Young-Hee;Park, Min-Yong;Kim, Jung-Bin;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.77-79
    • /
    • 2012
  • This study is to assess the differences between concrete having only one of fine aggregates such as crushed fine aggregates, sea sand and blast furnace slag in it and concrete having mixture of two kinds of those fine aggregates in it in order to find out how to deal with the lack of some aggregates. The findings are as follows. In terms of slump, the concrete containing sea sand and blast furnace slag has very low slump values while the concrete having the mixture of crushed fine aggregate and the other fine aggregates showed better workability. In terms of compressive strength, the concrete containing the mixture of two kinds of aggregates showed higher compressive strength. Accordingly, it is likely that the concrete containing the mixture of crushed fine aggregate, sea sand and blast furnace slag is better than the concrete with only one kind of fine aggregates in terms of the usability.

  • PDF

Thermal Conductivity of Compacted Bentonite and Bentonite-Sand Mixture (압축 벤토나이트 및 벤토나이트-모래 혼합물의 열전도도)

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.101-109
    • /
    • 2008
  • For the Kyungju bentonite which is considered as a candidate material for the buffer and backfill in the high-level waste repository, the thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured. The thermal conductivities of the compacted bentonites with a dry density of 1.2 to $1.8\;Mg/m^3$ and the bentonite-sand mixture with a dry density of 1.6 and $1.8\;Mg/m^3$ were measured within the gravimetric water content range of 10wt% to 20wt% and the sand fraction range of 10 to 30wt%. The thermal conductivity of compacted bentonite and a bentonite-sand mixture increases with increasing dry density and sand weight fraction in the case of constant water weight fraction, and increases with increasing water weight fraction and sand weight fraction in the case of constant dry density. The empirical correlations to describe the thermal conductivity of compacted bentonite and a bentonite-sand mixture as a function of water fraction at each dry density were suggested. These correlations can predict the thermal conductivities of bentonite and a bentonite-sand mixture with a difference below 10%.

  • PDF

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

A Correlation to Predict the Thermal Conductivity of Buffer and Backfill Material for a High-Level Waste Repository (고준위폐기물처분장 완충재 및 뒷채움재의 열전도도 예측을 위한 관계식)

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • In the present design concept of a high-level waste repository, the bentonite and bentonite-sand mixture are considered as the buffer and backfill material. For the Kyungju bentonite which is a candidate material, the thermal conductivities of compacted bentonite and bentonite-sand mixture were measured. A correlation has been proposed to predict the thermal conductivity of the Kyungju bentonite and the bentonite-sand mixture as a function of the dry density, the water content and the sand fraction. The proposed correlation can predict the thermal conductivity with a difference less than 10% under the experimental conditions.