• Title/Summary/Keyword: Sand backfill

Search Result 99, Processing Time 0.026 seconds

RUBBER INCLUSION EFFECTS ON MECHANICAL PROPERTIES OF RUBBER-ADDED COMPOSITE GEOMATERIAL

  • Kim, Yun-Tae;Gang, Hyo-Seb
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.129-134
    • /
    • 2010
  • This paper investigates effects of rubber inclusion on the strength and physical characteristics of rubber.added composite geomaterial (CGM) in which dredged soils, crumb rubber, and bottom ash are reused for recycling. Several series of test specimens were prepared at 5 different percentages of rubber content (i.e. 0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil) and three different percentages of bottom ash content (i.e. 0%, 50% and 100% by weight of the dry dredged soil). The mixed soil specimens were subjected to unconfined compression test and elastic wave test to investigate their unconfined compressive strengths and small strain properties. The values of bulk unit weight of the CGM with bottom ash content of 0% and 100% decrease from 14kN/$m^3$ to 11kN/$m^3$ and 15kN/$m^3$ to 12kN/$m^3$, respectively, as rubber content increases, because the rubber had a specific gravity of 1.13. The test results indicated that the rubber content and bottom ash content were found to influence the strength and stress-strain behavior of CGM. Overall, the unconfined compressive strength, and shear modulus were found to decrease with increasing rubber content. Among the samples tested in this study, those with a lower rubber content exhibited sand-like behavior and a higher shear modulus. Samples with a higher rubber content exhibited rubber-like behavior and a lower shear modulus. The CGM with 100% bottom ash could be used as alternative backfill material better than CGM with 0% bottom ash. The results of elastic wave tests indicate that the higher rubber content, the lower shear modulus (G).

  • PDF

Deformation Behavior of Underground Pipe with Controlled Low Strength Materials with Marine Dredged Soil (해양준설토 CLSM을 이용한 지하매설관 변형특성)

  • Lee, Kwan-Ho;Kim, Ju-Deuk;Hyun, Seong-Cheol;Song, Yong-Seon;Lee, Byung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.129-137
    • /
    • 2007
  • It is very urgent to research the proper recycling method of marine dredged soil as construction material for environmental conservation. Couple of developed countries have been lots of related researches on recycling of marine dredged soil for marine environmental conservation. This is highly imperative in our country. A small-scaled model test for underground pipe has been conducted on the use of controlled low strength materials with marine dredged soil. The flexible pipe, which is called PVC, was used. Four different testing materials, such as natural sand, insitu-soil, sand-CLSM with marine dredged soil and insitu-soil CLSM with marine dredged soil, were used. The vertical and lateral displacement of pipe with CLSM is one tenth of common granular materials. Also, the use of CSLM showed lower lateral and vertical pressure than that of common granular materials. The main reason is the effect of cement hardening of CLSM. This could increase of the stiffness of pipe with backfill materials. In this study, the data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM and reduce the deformation and earth pressure on flexible pipe.

Study on Characteristics of Controlled Low Strength Material Using Time Domain Reflectometry (시간영역반사법을 이용한 유동성 채움재의 특성 연구)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.33-37
    • /
    • 2016
  • The hydration process of Controlled Low Strength Material (CLSM) used for backfill is the primary factor to determine the construction period. The objective of this study is to monitor the hydration process of CLSM using the Time Domain Reflectometry (TDR) and to establish the relationship between dielectric constant and compressive strength. The CLSM specimen is composed of cement, flyash, silt, sand, accelerator, and water. The material characteristics of the CLSM including flow, unit weight, compressive strength are investigated. To measure the dielectric constant of the CLSM during the curing time, TDR probe incorporated with a mold and a reflectometer are used. Experimental results show that the dielectric constant remains constant at early stage, and then decreases as the curing time increases. In addition, the dielectric constant is related to the compressive strength in inverse power function. This paper suggests that the TDR technique may be used as a non-destructive testing method in order to estimate the compressive strength of the CLSM mixture under construction.

Study on Correlation between Compressive Strength and Compressional Wave Velocity for CLSM According to Curing Time (양생시간에 따른 CLSM의 압축강도 및 압축파 속도 상관성 연구)

  • Han, Woojin;Lee, Jongsub;Cho, Samdeok;Kim, Jinhwan;Byun, Yonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.5-11
    • /
    • 2015
  • The development of Controlled Low Strength Material (CLSM), which is a highly flowable material, has been performed for the application of backfill. The objective of this study is to compare the compressive strength and compressive wave velocity of CLSM according to the curing time. To investigate the characteristics of the CLSM consisting of sand, silt, water, flyash, and CSA cement, uniaxial compression test and flow test were carried out. For the measurement of compressional waves, a cell and a couple of transducers were used. The test results show that the compressive strength increases with the curing time, while the increment of compressive strength decreases with the curing time. In addition, the compressive wave velocity increases with the curing time, and the correlation between the compressive wave velocity and compressive strength is similar to exponential function. This study suggests that the correlation between the compressive wave velocity and compressive strength may be effectively used for the estimation of compressive strength of the CLSM at early curing time.

A Study on the Effects of Lateral Displacement of Retaining Wall on the Distribution of Lateral Earth Pressure -In the Case of Sloping Noncohesive Backfills- (벽체(壁體)의 변위(變位)와 토압분포(土壓分布)와의 관계(關係)에 대(對)한 연구(硏究) -비점성토(非粘性土)의 지표면(地表面)이 경사(傾斜)질 경우-)

  • Cho, Hi-Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.17 no.1
    • /
    • pp.29-34
    • /
    • 1973
  • This study was performed for the purpose of determining the effects of distribution of the lateral earth pressure in the case of sloping backfills of being consisted of the idealized cohesionless fragmental masses. The displacements were classified as eight types by D_UBROVA (by patterns). B type among these has its turning point at the top of the wall, moves outwardly and is significant to gravitational structure because of its foundation elasticity which causes displacement. Therefore, it might be surely acknowledged that the resultant, follows; $$E=1/2{\cdot}rH^2\frac{sin(u-{\varepsilon})cos({\alpha}+{\varepsilon})}{cos(u+{\alpha})}{\cdot}cot(u+{\rho})(t/m^3)$$, is appropriate for applying it to the designing of the sand-catch dams. The results obtained are as follows: 1. Lateral earth pressure is proportional to the square of the wall heights. 2. The coefficient(K) is directly proportional to the sloping of backfill surface and inversely proportional to the displacement. 3. The distribution of the pressure looks like parabola, curve of second order (Fig. 5, b). 4. The distribution of the pressure strength looks like that of hydrostatic pressure (Fig. 5, c).

  • PDF

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.