• Title/Summary/Keyword: Sand Foundation

Search Result 261, Processing Time 0.025 seconds

A Study on the Development and Improvement of Simple Piped Water Supply System in Rural Area of Korea (농촌지역 간이상수도시설 개발 및 개선에 관한 연구)

  • Chung, Yong;Koo, Ja-Kon;Kim, Myung-Ho;Yun, Suk-Woo;Kim, In-Sook
    • Journal of agricultural medicine and community health
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 1988
  • It is very important to supply safe drinking water for rural area not only a prevention of entric diseases but also a promotion of health life. It is estimated that 6,981,000 rural inhabitants were covered by the simple piped water supply system at the end of 1987 in Korea. The programme for improvement of water supply system in rural villages was initiated by the government since 1967. But most of these systems have been operated carelessly by the hands of villagers who have no proper knowledge and experience. Since most of water sources were located nearby farmland, there might be a possibility that the sources could be contaminated by pesticides and fertilizers. For this reason, it is recommended to take underground water as a water source rather than surface water such as a pond or streamwater in rural areas. However, the system is supplied from the surface water, its water quality can be improved by using of simple sand filter and simple chlorinator inexpensively. On the basis of an on-site study, conducted during 1986-87, in San-Buk Village, Keum-Sa-Myon, Yeju-Gun, Kyong-Gi-Do, the new simple piped water supply system was designed by the Institute for Environmental Research, Yonsei University, and constructed by the villagers themselves in September 1987. This simple system which is protected by metal fences consists of three main parts, pump house, vertical sand filter and water tank. The pumped water from underground flows into the upper part of the sand filter, through the sand, and out the water tank which is connected to the bottom of vertical filter. And the simple plastic-bottle chlorinator was installed in the water tank for chlorination. The water quality was remarkably improved after completion of construction. The total bacterial count was not detected from the tap water in households distributed by this simple piped water supply system. The construction cost of this system which was connected 34 households in San-Buk Village, was 4,851,000 won (approximately 6,020 U.S. dollars : 1$=805.8 won) in 1987,77% of expenses was supported by the Community Development Foundation in Korea. This case study for simple piped water supply projects will be applicable to other programme for improvement of water supply system in rural areas of Korea, and other developing countries.

  • PDF

Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test (모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성)

  • Shin, Kwang-Ho;Hwang, Cheol-Bi;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4588-4594
    • /
    • 2014
  • In this study, small scaled (1/30) laboratory chamber tests of the pile foundation for a lightweight concrete pavement system were carried out to evaluate the safety of a pile foundation on sandy soil. The testing ground was simulated in the field and a standard pile-loading test was conducted. The test piles were divided into 3 types, Cases A, B and C, which is the location from the center of the slab by applying a vertical load. The interval between the piles was set to 8 cm. As a result of the pile foundation model test, the pavement settled when the vertical load was increased to 12kg from 1.5kg in sandy soil ground, particularly the maximum settlement of 0.04mm. Judging from the model chamber test, Case A showed compressive deformation, whereas Case B represented the compression and tensile forces with increasing vertical load. Case C showed an increase in tensile strain.

A Study on Applicability of Stabilizing Pile to Foundation Soil of Slope with Various Strength Parameters (사면하부지반의 강도정수에 따른 억지말뚝 적용성 연구)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.331-337
    • /
    • 2016
  • Several foundation soil conditions below a homogeneous sand slope were assumed and slope stability analyses were conducted to determine the soil condition, in which a stabilizing pile can be used to increase the factor of safety against sliding. The assumed heights of the sand slope were 5m and 10m. For a 5m slope height, a stabilizing pile can be used in the foundation soil with a $15^{\circ}$ internal friction angle and a cohesion of 10kPa. For a 10m slope height, a stabilizing pile can be used in the foundation soil with a $20^{\circ}$ internal friction angle and a cohesion of 10kPa and a stabilizing pile can be used in the foundation soil with a $0^{\circ}$ internal friction angle and 40kPa, 45kPa and 50kPa of cohesion. According to the analysis results of stabilizing pile-reinforced foundation soil, the length of the stabilizing pile and magnitude of the maximum bending moment were strongly affected by the internal friction angle of the foundation soil. The lengths of stabilizing pile, for an internal friction angle of $0^{\circ}$ were 4.6, 8.0 times greater than those with an internal friction angle of $5^{\circ}$. The magnitude of the maximum bending moment of the stabilizing pile for an internal friction angle of $0^{\circ}$ was 24.6 times greater than that for an internal friction angle of $5^{\circ}$. Practically, a stabilizing pile cannot be used for foundation soil with an internal friction angle of $0^{\circ}$. Considering the results derived from this study, the effects of a stabilizing pile can be maximized for soft foundation soil that is embanked with a slow construction speed.

Bearing Capacity of a Monopod Bucket Foundation for Offshore Wind Towers - Centrifuge and Numerical Modeling (해상풍력 모노포드 버켓기초의 지지력 거동 - 원심모형실험 및 수치해석)

  • Kim, Dong-Joon;Choo, Yun Wook;Kim, Surin;Kim, Jae-Hyun;Choi, Ho-Young;Kim, Dong-Soo;Lee, Man-Soo;Park, Yung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.23-32
    • /
    • 2013
  • In order to evaluate the bearing capacity behaviour of a monopod suction bucket foundation for an offshore wind tower at the western sea of Korea, a centrifuge load test and numerical analyses were performed. The monopod bucket foundation was designed to be installed in a silty sand layer. The model soil was prepared to simulate a target site by using soil samples having similar properties and controlling relative density. In-flight miniature cone penetration test and bender element array were used to confirm that the model soil had represented the target site conditions. The load - rotation curve of the centrifuge load test was analysed. A series of numerical analyses were performed to validate the experimental conditions. Self-weight of the model, distance to the boundary and elastic modulus of the soil layer were varied to study their effects on the load - rotation curves.

Soil Improvement using Vertical Natural Fiber Drains (연직천연섬유배수재를 이용한 연약지반 개량)

  • Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.37-45
    • /
    • 2008
  • A pilot test using environmentally friendly drains, was carried out to evaluate their applicability potential in the field. The pilot test site was divided into 5 different areas, with several combinations of vertical and horizontal drains installed for evaluation. Conventional natural fiber drains (FDB), new developed straw drain board (SDB) and plastic drain board (PDB) were used as vertical drains, while sand and fiber mats were used as horizontal drains. Surface settlement rates and excess pore pressure generation/dissipation tendency of PDB and FDB are almost identical except those of SDB. Cone tip resistance obtained from cone penetration test measured at the end of 1st consolidation stage for upper soft layer definitely increased irrespective of types of vertical drains. The monitoring and site investigation test data obtained at the pilot test site prove the vertical natural fiber drains can be used as substitutes of conventional plastic and sand material.

  • PDF

Uplift Behavior of Group Micropile according to Embedded Pile Condition in Sand (사질토지반에서 그룹 마이크로파일의 설치조건에 따른 인발거동특성)

  • Kyung, Doo-Hyun;Kim, Ga-Ram;Park, Dae-Sung;Kim, Dae-Hong;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.27-37
    • /
    • 2015
  • The micropile is small diameter pile foundation of which diameter is below 300 mm. This system has been applied to reinforce the foundation structure. In the present study, the effects of embedded conditions of group micropiles were investigated from a series of uplift load tests. For the study, uplift load tests were performed using group micropiles in various pile spacing and installation angle. The increase of uplift resistance and the reduction of uplift displacement were investigated in the tests. As the result, the resistances were principally changed by embedded pile angle, the resistance increase were 33%, 59% and 5% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle. The uplift displacement reduction increases with lower pile spacing condition and the reduction ratios of uplift displacements in the same spacing condition were 50%, 53%, -45% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle.

Numerical analysis of suction pile behavior with different loading locations and displacement inclinations

  • Kim, Dongwook;Lee, Juhyung;Nsabimana, Ernest;Jung, Young-Hoon
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • Recently, interest of offshore structure construction in South Korea is growing as the land space becomes limited for further development and the renewable energy grows to be more attractive for the replacement of the fossil energy. In order for the optimal construction of optimum offshore floating structures, development of safe and economical offshore foundation technologies is a priority. In this study, the large-deformation behavior of a suction pile, which markets are rapidly growing nowadays, is analyzed for three different loading locations (top, middle, and bottom of the suction pile) with three different displacement inclinations (displacement controlled with displacement inclinations of 0, 10, and 20 degrees from the horizontal). The behavior analysis includes quantifications of maximum resistances, translations, and rotation angles of the suction pile. The suction pile with its diameter of 10 m and height of 25 m is assumed to be embedded in clay, sand, and multi layers of subsea foundation. The soil properties of the clay, sand, and multi layers were determined based on the results of the site investigations performed in the West sea of South Korea. As analyses results, the maximum resistance was observed at the middle of the suction pile with the displacement inclination of 20 degrees, while the translations and rotations resulting from the horizontal and inclined pullouts were not significant until the horizontal components of movements at the loading points reach 1.0 m.

Alchemical Transformation Process revealed in Sand Play (모래놀이에 나타난 연금술적 변환과정)

  • Dukkyu Kim
    • Sim-seong Yeon-gu
    • /
    • v.39 no.1
    • /
    • pp.61-91
    • /
    • 2024
  • Alchemy is the process of producing worthless substances into the best substances through chemical opus(work). On the surface, many of the alchemist's experiments can be depicted as work on transforming substances, but in reality, the alchemist's result is a product of the Unconscious. This study aims to explain the three phases of alchemy, Nigredo, Albedo, and Rubedo, through Michael Mayer's alchemical text, Atalanta Fugiens, and understand the transformation process by utilizing images that appeared from clients' sand play therapy. This study first described why alchemy, as the foundation for the psychology of the Unconscious, is important in sand play that deals with images. Next, Nigredo (blackening), the first phase of the alchemical process, is briefly described, and how the contents of Nigredo, such as chaos, dissolution, separation, division, corruption, death, and calcination, appear in sand play therapy. Next, the second phase, albedo (whitening), is described, and how the images of water and fire, which are representative images of albedo in the form of purification, sublimation, distillation, separation, descension, and coagulation, are revealed in sand play. Lastly, the phase of rubedo (reddening) in alchemy is described, and how the form of union (mandala or central image) in rubedo, which appears in the form of conjunction and rebirth, is revealed in sand play. The symbols revealed in alchemy are very valuable in amplifying the images that appeared in sand play therapy or dream analysis. In particular, the procedures found in alchemical opus are helpful in understanding the transformation process of personality.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.