• Title/Summary/Keyword: Sample thickness

Search Result 809, Processing Time 0.029 seconds

Studies on the Influence of Sample thickness, Load Increment Ratio and Load Increment Duration on Consolidation Characteristics. (시료의 두께, 하중증가율 밀 재하시간이 압밀특성에 미치는 영향)

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.3
    • /
    • pp.4750-4770
    • /
    • 1978
  • Under the various variations of the sample thickness, the load increment ratio and the load increment duration, this consolidation test of the clay in the Asan Bay was tried for the comparison with the standard consolidation test. The results gained are as follows; 1. The void ratio variations of the leached-clay samples were increasingly high, according as the sample thickness thinned and the load increment duration and the laod increment ratio increased. 2. The coefficient of consolidation were increased with the increment of the sample thickness, of the load increment ratio and of the load increment duration. Near the pre-consolidation load, the coefficient of secondary consolidation had the maximum value and lessened with the increment of the sample thicknss, and of the load increment duration 3. The value of the pre-consolidation load increased in proportion to the increment of the sample thickness and the decrease of the load increment ratio and the load increment duration. 4. The compression indices increased as the increment of load increased and decreased as the sample thickness increased. 5. The initial compression ratio increased as the sample thickness, the load increment ratio and the load increment duration decreased. The ratio of primary compression to the secondary decreased with the increment of the sample thickness and of the load increment ratio. 6. The time at the completion of psimary consolidation increased with the increment of the sample thickness and of the consolidation load, and with the decrease of the load increment ratio. 7. The compression indicses increaed as the sample thickness lessened and decreased as the load increment ratio increased. The coefficient of consolidation increased according as the sample thickness, the load increment ratio and the load increment duration went up. The settlement at the construction site should be calculated highly in proportion as the sample thickness lessened and the load increment ratio increased. The consolidation ratio is thought to be accelerated if the sample thickness and the load increment ratio becomes higher and the load increment duration longer.

  • PDF

Variation in the Residual Stress of Hastelloy X Superalloy Fabricated by the Laser Powder Bed Fusion Process with Sample Thickness and Support Structure (레이저 분말 베드 용융법으로 제작된 Hastelloy X 적층 소재의 시편 두께 및 서포트 구조에 따른 잔류응력 변화)

  • Jang, J. E.;Park, S. H.;Kim, D. H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.136-142
    • /
    • 2022
  • The purpose of this study was to investigate the effects of sample thickness and support structure on the residual stress of Hastelloy X superalloy samples fabricated by laser powder bed fusion (LPBF), which is an additive manufacturing process. The residual stresses of LPBF samples with different thicknesses and support structures were measured using X-ray diffraction. The results revealed that as the thickness of sample increased from 2.5 mm to 20 mm, its tensile residual stress gradually decreased from 443.5 MPa to 182.2 MPa. Additionally, the residual stress in the bottom region of sample was higher than that in the top region, and the residual stress difference in the bottom and top regions became more pronounced as the sample thickness decreased. The residual stress of LPBF sample also varied depending on the structure of support. The residual stress of sample decreased with increasing contract area between the sample and the support, because the larger contract area led to smaller temperature gradient throughout the sample.

Blow Characteristics in Extrusion Blow Molding for Operational Conditions (압출 블로우 성형에서 성형조건에 따른 성형특성)

  • Jun Jae Hoo;Pae Youlee;Lyu Min-Young
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.233-238
    • /
    • 2005
  • Blow molding is divided into three categories, injection stretch blow molding, injection blow molding, and extrusion or direct blow molding. Extrusion blow molding has been studied experimentally to characterize the blowing behavior of parison. Blow conditions such as blowing temperature and cooling time were the experimental variables in this blowing experiment. Wall thickness of the lower part of blow molded sample was thicker than that of the upper part because of the sagging of parison during extrusion process. As temperature increases the wall thickness and the weight of blow molded sample decreased. No thickness variations in the blowing sample were observed according to the cooling time. The lower part of the sample showed high degree of crystallinity compare with the upper part of the sample. Thus the lower part of the sample was strong mechanically and structurally. It was recognized that the uniform wall thickness could not be obtained by only controlling the operational conditions. Parison variator should be introduced to get uniform wall thickness of parison and subsequently produce uniform wall thickness of blow molded product.

Effect of Zirconia Core Thickness on the Tone Blocking of Discolored Tooth and Metal Post (지르코니아 코어의 두께에 따른 변색치와 메탈 포스트의 색조차단 효과)

  • O, Seon-Mi;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.327-335
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the correlation between zirconia core thickness and color tone blocking of discolored tooth and metal post. Methods: For this study, we made 20-porcelain sample and 4-metal sample( liechtenstein IPS e.max) bonded to zirconia core of different thickness with cement(Relyx ARC-3M USA)for produce discolored. We measured the color-spectral characteristics, using Shadepilot equipment(Degudent USA).We measured it with Shadepilot equipment set by automated average mode in 3 times And applied the average value obtained from 2 times of measurement in the middle of each sample. Results: As a result of analysing color-spectral characteristics on zirconia core sample, Depending on the thickness of zirconia core, the value of brightness(${\Delta}L*$:color-spectral characteristic) was increased within limited range, value of ${\Delta}a*$, ${\Delta}b*$ was decrease. Conclusion: Consequently, we obtained the following results: Changes of sample color were observed depending on the thickness of zirconia, but the range of change did not exceed the scope range of shade guide. The case of metal posts, shade guide color D2 were observed in 0.5mm of zirconia core thickness. As a result, in case of porcelain, increasing the zirconia thickness of 0.3mm or more is unnecessary for color blocking effect, in case of metal post, considering the discolored tooth, thickness of zirconia with at least 0.5mm or more is recommended.

The Effects of Lift-Off from Wall Thinning Signal in Pulsed Eddy Current Testing

  • Park, Duck-Gun;Angani, C.S.;Kishore, M.B.;Kim, C.G.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.298-301
    • /
    • 2012
  • In order to know the effect of surface irregularity in the detection of local wall thinning of pipeline using pulsed eddy current (PEC), the lift-off effects on PEC signal have been investigated. Three kinds of parameters in the PEC signal, which is "peak amplitude", "time to peak amplitude" and "time to zero crossing" are analyzed to separate the lift-off effects in the PEC signal. The distance from sensor to the bottom of sample which is the total thickness of combined insulator and sample is kept constant. The magnitude of the differential peak amplitude is increased with increasing sample thickness, the time to peak amplitude is increased with increasing the sample thickness. To determine the effect of lift-off, a number of balanced transient responses combining wall thinning locations and lift-off distances were plotted.

Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy

  • Ervina Efzan, M.N.;Siti Norfarhani, I.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.112-116
    • /
    • 2015
  • This work studied the thickness and contact angle of solder joints between SAC 305 lead-free solder alloy and a Copper (Cu) substrate. Intermetallic compound (IMC) thickness and contact angle of 3Sn-Ag-0.5Cu (SAC 305) leadfree solder were measured using varying aging times, at a fixed temperature at 30℃. The thickness of IMC and contact angle depend on the aging time. IMC thickness increases as the aging increases. The contact angle gradually decreased from 39.49° to 27.59° as aging time increased from zero to 24 hours for big solder sample. Meanwhile, for small solder sample, the contact angle increased from 32.00° to 40.53° from zero to 24 hours. The IMC thickness sharply increased from 0.007 mm to 0.011 mm from zero to 24 hours aging time for big solder. In spite of that, for small solder the IMC thickness gradually increased from 0.009 mm to 0.017 mm. XRD analysis was used to confirm the intermetallic formation inside the sample. Cu6Sn5, Cu3Sn, Ni3Sn and Ni3Sn2 IMC layers were formed between the solder and the copper substrate. As the aging time increased, the strength of the solder joint mproved due to reduced contact angle.

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei Zhou;Hadi Haeri;Vahab Sarfarazi;Mohammad Fatehi Marji;A.A. Naderi;Mohammadreza Hassannezhad Vayani
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.71-84
    • /
    • 2023
  • In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.

Investigation of Ar ion-milling rates for ultrathin single crystals

  • Lee, Min-Hui;Kim, Gyu-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.143-144
    • /
    • 2015
  • Here we report the Ar-ion milling rates of ultrathin Si and GaAs single crystals. The thickness change is measured using convergent beam electron diffraction (CBED) technique with the help of Bloch wave simulation method. This study suggests the experimental procedures to determine the references for an etching rate to reduce a sample thickness or to remove the damaged sample surface using Ar-ion source.

  • PDF