• Title/Summary/Keyword: Saltwater intrusion

Search Result 55, Processing Time 0.025 seconds

Assessment on Saline Water Intrusion between Types of Injections of Artificial Reclaimed Water and Extractions in Artificial Aquifer (인공 하수처리수 주입과 양수 방식에 따른 인공 대수층의 해수침투평가)

  • Kang, Jeong-Ok;Lee, So-Jung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.603-612
    • /
    • 2006
  • The study with laboratory sandbox model has been carried out to address potential use of reclaimed water, as a way for artificially recharging the coastal aquifer, to effectively prevent from seawater intrusion. To do this, we assessed hydraulic and geochemical properties depending upon various extraction and recharging conditions. While solely being recharged, the intrusion could be significantly retarded than those of recharge and extraction implied together. At 0.5 to 2 for the ratio of the extraction over the recharge rate, the fresh water was exploited from the tank, where the void regime was simultaneously saturated with the recharged water. In the meantime, the saline water zone was diluted and back-tracked by the recharged water due to forming a hydraulic geochemical barrier around the injection well. However, if the ratio was being increased to greater than 4, saltwater more deeply intruded to the freshwater zone because the artificial recharge was not sufficiently supplied to timely back-fill the void space. When the aquifer water was intermittently extracted at the ratio of $0.5{\sim}2$ over the recharge rate, the value of S.M.I. decreased, but increasing it to more than 4 unlikely escalated the value of S.M.I as much as $3{\sim}47%$ indicating that the salt water intruded. It finally revealed that the proper ratio of extraction/recharge or intermittent extraction would efficiently retracted seawater intrusion while the freshwater sources could be conservatively utilized.

Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion (해수침투 저감을 위한 균열암반 대수층 내 담수주입시험)

  • Shin, Je-Hyun;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Fresh water injection test in a fractured bedrock aquifer was applied as an efficient approach to lower saline concentrations in the saltwater-freshwater transition zone formed by seawater intrusion in a coastal area. The methodology and effectiveness of fresh water injection for hydraulically controlling seawater intrusion is overwhelmingly site dependent, and there is an urgent need to characterize the permeable fractures or unconsolidated porous formations which can allow for seawater flow and transport. Considering aquifer characteristics, injection and monitoring boreholes were optimally designed and completed to inject fresh water through sand layer and fractured bedrock, respectively. We devised and used the injection system using double packer for easy field operation and maintenance. Overall fracture distribution was systematically identified from borehole image logs, and the section of fresh water injection was decided from injection test and monitoring. With fresh water injection, the fluid electrical conductivity of the monitoring well started to be lowered by the inflow of fresh water at the specific depth. And this inflow leaded to the replacement of the fluid in the upper parts of the borehole with fresh water. Furthermore, the injection effect lasted more than several months, which means that fresh water injection may contribute to the mitigation of seawater intrusion in a coastal area.

Basic Study for Securing Stable Water Resources in Coastal Area (해안지역 안정적 수자원 확보를 위한 기초적 연구)

  • Koh, Byoung-Ryoun;Oh, Young-Hun;Ahn, Seung-Seop
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1977-1985
    • /
    • 2014
  • Many countries around the world are amplifying interest and studies on irrigation, flood control and environment with concern on serious water problems. Especially for irrigation in water supply vulnerable areas such as coastal areas - islands, business on underwater resource security facilities are promoted to secure stable water resources due to development of society and increase of life quality. Also, various policies such as reuse of leaking underwater, utilization of underwater at waterfront, and artificial recharge, etc are planned and designed. In order to develop small sized underwater resource secure technology, verification of seawater-freshwater interface is executed and how the balance between these will develop is a great interest of coastal areas - islands. In this study, seawater-freshwater interface behavior analysis experiment was conducted while reflecting properties of coastal areas - islands and executed hydraulic similitude of saltwater intrusion form control technology on abstraction.

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

Study on climate change response of small island groundwater resources

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.182-182
    • /
    • 2017
  • Many small island nations rely on groundwater as their only other source of freshwater in addition to rainwater harvesting. The volume of groundwater resource of small island nations are further limited by their smaller surface area and specific hydrogeology. The rapid growth of population and tourism has led to increasing water demands and pollution of available groundwater resources. The predicted climate change effects pose significant threats to the already vulnerable freshwater lens of small islands in the form of rise in sea level, coastal inundation, saltwater intrusion, varied pattern of precipitation leading to droughts and storm surges. The effects of climate change are further aggravated by manmade stresses like increased pumping. Thus small island water resources are highly threatened under the effects of climate change. But due to the limited technical and financial capacity most of the small island developing states were unable to conduct detailed technical investigations on the effects of climate change on their water resources. In this study, we investigate how well small island countries are preparing for climate change. The current state of freshwater resources, impacts of predicted climate change along with adaptation and management strategies planned and implemented by small island countries are reviewed. Proper assessment and management practices can aid in sustaining the groundwater resources of small islands under climate change.

  • PDF

Development of a Laterally Averaged 2-Dimensional Model for Saltwater Intrusion in Estuary (하구의 염수침입을 해석하기 위한 연직 2차원 수치모형 개발)

  • Lee, Jong-Uk;Lee, Bong-Hui;Jo, Yong-Sik;Yun, Tae-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.19-30
    • /
    • 2001
  • A laterally averaged 2-dimensional hydrodynamic model is newly developed. The coordinate system is first transformed to minimize the effects of irregularity of bottom and surface. The advection terms of the governing equations are then discretized by an upwind scheme. By employing an explicit scheme for longitudinal direction and an implicit scheme for vertical direction, the model is free from restriction of temporal step size caused by a relatively small grid ratio. To demonstrate the applicability of the model, calculated time histories of free surface displacements and distributions of velocity and salinity are compared with the field measurements of the Keum River Estuary before construction of the estuary dam. A reasonable agreement is observed between them.

  • PDF

Application of Soil's Self-Decontamination Ability to Contaminated Ground (흙의 자체정화능력을 이용한 오염된 토양정화)

  • Jeong, Jin-Seob;Jhung, Jhung-Kwon;Kim, Tae-Hyung;Fang, Hsai-Yang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.632-638
    • /
    • 2006
  • There are numerous approaches available to cleanup a contaminated surface and subsurface ground currently in use, however, these methods all classify the decontamination after the contamination has penetrated into the soil masses and is costly. Unlike these approaches, in this study, utilization of soil's self-decontamination ability by rearranging and preplanning of the topographical features and surface and subsurface drainage systems for the potential contamination sites before or during contamination process has been considered as an another cleanup method. Step by step explanations on why and how to develop the self-decontamination procedure is proposed in detail. Two examples are presented including contaminated saltwater intrusion along a coastal region and control or prevention of radioactive toxic radon gas ($^{222}Rn$) in residential areas. The effectiveness of the proposed systems to these two examples using the soil's self-decontamination ability is well illustrated.

Design of Optimal Wet-Season Injection Well for Augmenting Groundwater Resources in Coastal Areas (해안지역 지하수자원 확충을 위한 우기 인공주입정의 최적설계)

  • Park, Nam-Sik;Shi, Lei;Cui, Lei;Lee, Chan-Jong;Mun, Yu-Ri
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.415-424
    • /
    • 2009
  • Artificial injection of surplus surface water during wet seasons and recovery is one of possible solutions for conjunctive uses of surface water and groundwater. The methodology is especially attractive for regions of monsoon type weather. In this work a simulation-optimization model is developed to identify an optimal injection system to sustain an over-exploiting freshwater pumping well. The injection well is to be operated during wet seasons only while the pumping well is to be operated throughout an entire year. The objective function is the minimization of injected volume of freshwater. Saltwater intrusion and dry wells are considered as constraints. An example application is made on a small hypothetical island with poor hydrogeologic conditions. The optimization model is successful in determining optimal injection locations and rates for various cases.

Classification and Characteristic Comparison of Groundwater Level Variation in Jeju Island Using Principal Component Analysis and Cluster Analysis (주성분분석 및 군집분석을 이용한 제주도 지하수위 변동 유형 분류 및 특성 비교)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Lee, Chung-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.22-36
    • /
    • 2022
  • Water resources in Jeju Island are dependent virtually entirely on groundwater. For groundwater resources, drought damage can cause environmental and economic losses because it progresses slowly and occurs for a long time in a large area. Therefore, this study quantitatively evaluated groundwater level fluctuations using principal component and cluster analyses for 42 monitoring wells in Jeju Island, and further identified the types of groundwater fluctuations caused by drought. As a result of principal component analysis for the monthly average groundwater level during 2005-2019 and the daily average groundwater level during the dry season, it was found that the first three principal components account for most of the variance 74.5-93.5% of the total data. In the cluster analysis using these three principal components, most of wells belong to Cluster 1, and seasonal characteristics have a significant impact on groundwater fluctuations. However, wells belonging to Cluster 2 with high factor loadings of components 2 and 3 affected by groundwater pumping, tide levels, and nearby surface water are mainly distributed on the west coast. Based on these results, it is expected that groundwater in the western area will be more vulnerable to saltwater intrusion and groundwater depletion caused by drought.

Numerical Modeling for Sedimentation Characteristics of the Lower Nakong River and Sediment Dredging Effects at the Nakdong River Estuary Barrage (낙동강 하류의 유사특성과 낙동강하구둑 준설효과에 관한 수치모의 연구)

  • Ji, Un;Julien, Pierre Y.;Park, Sangkil;Kim, Byungdal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.405-411
    • /
    • 2008
  • The Nakdong River Estuary Barrage (NREB) was constructed in 1987 to prevent saltwater intrusion and to provide the sustainable water supply in the upstream channel. Sediment dredging has been conducted to eliminate deposited sediments in the approached upstream channel of the NREB. Fluvial changes and sedimentation problems have been continued due to urbanization and development in the watershed as well as construction of the NREB. However, the sufficient field monitoring and researches for sedimentation characteristics and bed changes have not been performed after construction of the NREB. Therefore, bed elevation changes and seasonal sediment concentration distribution were analyzed using the quasi-steady state model with historical field data in this study. The water surface elevation changes with and without sediment dredging operation were calculated using the developed quasi-steady state model and finally the sediment dredging effects were evaluated.