• Title/Summary/Keyword: Salting out effect

Search Result 28, Processing Time 0.029 seconds

Development of spherical crystallization technique and its application to pharmaceutical systems

  • Kawashima, Yoshiaki
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 1984
  • A novel agglomeration technique, termed "Spherical Crystallization Process", which can transform directly the fine crystals produced in the crystallization or the reaction process into a spherical shape was developed. By this technique, needle like crystals such as salicylic acid were transformed into free flowing and directly compressible agglomerates. Sphericaly agglomerated aminophyline crystals were obtained directly from the reaction system, which could reduce the preparation processes, e. g. synthesis, crystallization and agglomeration, into only one step. Sodium theophyline monohydrate agglomerates were prepared by salting out, the rate process of which was described by a first order kinetics. Agglomerated crystals of ndw complex of indo-methacin-mepirizole were prepare with this technique; an improved therapeutic effect of the resultant crystals was expected. expected.

  • PDF

Anti-Angiogenesis Effect and Cytotoxicity of Enterobacteria Isolated from Fusiform Fish

  • Lim, Jong-Kwon;Song, Min-Gyu;Shin, Jin-Hyuk;Lee, Se-Young;Kim, Jong-Deog
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.158-162
    • /
    • 2005
  • Enterobacteria, named ${\lambda}-bacteria$ isolated from fusiform fish, have strong anti-angiogenesis effect. ${\lambda}-28$ species bore higher anti-angiogenesis effect. Cultured liquid was performed salting out, dialysed and freezed dried. This sample was executed size exclusion chromatography with fraction collector. Anti-angiogenesis, cytotoxicity, and SDS-PAGE were carried out with fraction number. ${\lambda}-28$ species was lower toxicity against HUVECs and effective band was conformed with SDS-PAGE.

  • PDF

Electrochemical Behaviors and Analytical Application of Copper-1,5,9,13-Tetrathiacyclohexadecane Complex in Acetonitrile (아세토니트릴 용매 중에서 Copper-1,5,9,13-Tetrathiacyclohexadecane착물의 전기화학적 거동과 그 분석적 응용)

  • Moo-Lyong Seo;Bu-Yong Lee;Myung-Ja Choi;Bae Jun Ung;Park Tae Myeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.412-418
    • /
    • 1992
  • The electrochemical behaviors and analytical application of copper-1,5,9,13-tetrathiacyclohexadecane[16-ane-$S_4$] complex in acetonitrile(AN) solution have been investigated by the use of DC polarography and differential pulse polarography. Thus the formation constant of copper complex was $10^{3.51}$. Copper (Ⅱ) ion was found to form complex of 1-to-1 composition with [16-ane-$S_4$]. In addition, reduction step was irreversible and the reduction current was diffusion controlled. And the effect of concentration of the salting-out reagent and chelating agent and pH of aqueous phase on the determination of copper (Ⅱ) was investigated and diverse ion effect was discussed. By salting-out extraction technique, we can be determined until the concentration of copper (Ⅱ) of 60 ppb.

  • PDF

Solubility of a Salt Dissolved in Water in the Presence of Another Salt (두 가지 염이 동시에 물에 녹을 때의 용해도)

  • Park, Jong-Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.453-465
    • /
    • 2009
  • In this study, the descriptions of salt solubility in the textbooks of secondary school and college were reviewed to figure out the reason of low understanding of elementary and secondary school students and teachers about the solubility of a salt in the presence of other ions. The ionic strength dependence of salt solubility was not introduced in the secondary school textbooks and general chemistry textbooks. It appeared in the physical chemistry textbooks as a direct or an indirect explanation. However, most of college senior students who had learned the physical chemistry could not relate the salt solubility with the ionic strength change. The factors might affect salt solubility, such as the ion pair formation and the activity coefficient change by ionic strength, were mentioned and an experimental result was also shown to resolve the questions that college students and teachers might have. Because these explanations are beyond the secondary school level, we need to develope an easier and better explanation suitable for the secondary school students.

Preparation and Performance of Low Pressure PVDF Nano-composite Hollow Fiber Membrane Using Hydrophilic Polymer (친수화 고분자 소재를 이용한 저압용 PVDF 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.361-367
    • /
    • 2018
  • In this study, the nanofiltration (NF) composite membranes for the low pressure use were prepared using polyvinylidene fluoride (PVDF) hollow fiber membrane as a supporter. Poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) were coated onto the PVDF membrane by both layer-by-layer and salting-out methods. To characterize the prepared NF membranes in terms of the flux and salt rejection, 100 mg/L feed solutions of NaCl, $MgCl_2$, and $CaSO_4$ were used at the flow rate of 1 L/min and the operating pressure of 2 bar at room temperature. The NF membranes coated with 20,000 ppm PSSA (ionic strength 1.0) solution for 3 minutes and then 30,000 ppm (ionic strength 0.1) solution for 1 minute were observed the best performance. The permeability and salt rejection were 38.5 LMH, 57.1% for NaCl, 37.9 LMH and 90.2% for $MgCl_2$ and 32.4 LMH and 54.6% for $CaSO_4$, respectively.

Prediction Model of Absorbed Quantity and Diffusivity of Salf in Radish during Salting (무우의 염절임시 소금의 침투량과 확산도 예측모델)

  • 최용희;권태연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.572-581
    • /
    • 1991
  • For the development of a model to predict absorbed salt quantity in radish during salting, absorbed salt quantity and water content change in radish by the hour were measured at 5%, 10%, 15% brine concentration and $10^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$ respectively. Absorbed salt quantity in radish by the time showed logarithmic function, absorbed salt quantity by brine concentration and temperature showed linear relation. A model to predict absorbed salt quantity in radish at each time, brine concentration and temperature was calculated by the regression program of SPSS. Apparent diffusivity of salt in radish was calculated from appropriated diffusion equation solution of Fick's second law using computer simulation. Salt diffusivity in radish increased as brine concentration increased and the effect of temperature could by expressed by Arrhenius equation. A model equation which could predict salt diffusivity was developed by regression analysis. To specify relation between salt quantity which absorbed into radish and water content which removed out of it, Flux ratio(${\Delta}W/{\Delta}S$) was calcuated. The values showed that the removed water content was greater than the absorbed salt quantity.

  • PDF

Quantitative Determination of pH and Salt Effects on the Soil Sorption Equilibrium of Pentachlorophenol (PCP) (pH와 염이 Pentachlorophenol의 토양 수착평형에 미치는 영향의 정량적 결정)

  • 오정은;이동수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 1997
  • Laboratory experiments were conducted to study the effects of pH and salt level on the soil sorption equilibrium of pentachlorophenol (PCP) which is hydrophobic and ionogenic. Experimental results indicated that the sorption equilibrium constant (Kp) of PCP increased with decreasing pH. A quantitative sorption model involving linear isotherms was estabilished to predict the pH effect on the PCP sorption equilibrium over the pH range from 3 to 8. The model prediction was in good agreement with the experimental data. Also, the Kp increased with salt concentration over the entire pH range. At added salt levels less than 0.1M, increase in Kp was larger than when the added levels were higher than 0.1M. Salt might increase the PCP sorption by inducing 'salting out-effect' or by forming deprotonated PCP-cation ion pairs such as PCP$\^$-/K$\^$+/. Taking the pH range (5-8) and the salt content (up to 50 g/L) in the groundwater of Metropolitan landfill sites into consideration, the results indicated that the retardation factor of PCP in this area might range from 3 to 550 depending upon pH and salt content.

  • PDF

Surface Activity of Crude Ginseng Saponin

  • Kyu, Han-Suk;Kim, Nam-Hong
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.109-113
    • /
    • 1984
  • The critical micelle concentration (CMC) of crude ginseng saponin in water was determined by fluorometry and surface-tension measurement. These two methods gave the the CMC value, 0.015g/100ml AND 0.013G/100ml, respectively. The surface excess of the saponin and the area occupied by a saponin molecule at the monolayer adsorbed at air and waterinterface were calculated employing Gibbs adsorption equation. The presence of salt increased the surface activity of the saponin: it decreased the CMC, the surface tension at the CMC and the area occupied by a saponin molecule at the monolayer, which should be due to the salting-out effect of the salt.

  • PDF

Effect of Alcohols and Carboxylic Acids on Extraction Characteristics for 1,3-Propanediol by Aqueous Two Phases Systems (수상이성분계에 의한 1,3-프로판디올 추출특성에 대한 알콜과 카르복실산의 영향)

  • Hong, Yeon Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.575-579
    • /
    • 2013
  • 1,3-Propandiol is a promising chemical which can be produced from fermentation of glycerol because the application of 1,3-propanediol is mainly in the production of bio-polytrimethylene terephthalate (bio-PTT). However, the cost of downstream processes in the biological production of 1,3-propanediol can make a high portion in the total production cost due to the large amount of water and the by-produced carboxylic acids such as succinic, lactic and acetic acids in 1,3-propanediol fermentation broth. In this study, aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were applied to the recovery of 1,3-propanediol from its artificial aqueous solution. Formation of aqueous biphases in hydrophilic alcohols and phosphate salts was due to the salting-out effect of salts in bottom phase, thereby 1,3-propanediol in bottom phase was moved into top phase. Extraction efficiency for 1,3-propanediol was proportional to the polarity of hydrophilic alcohols and the basicity of salts and the maximum value of extraction efficiency was more than 98%. In the aqueous two-phases systems after extraction, there was no carboxylic acid in top phase. Therefore, it was concluded that the aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were effective for the selective recovery of 1,3-propanediol without any coextraction of carboxylic acids.

Development of an analytical method of organochlorine pesticides in human bloods using head space-solid phase microextraction coupled with gas chromatography/mass spectrometry (HS SPME-GC/MS를 이용한 혈액 중 유기염소계 농약의 분석법 개발)

  • Kang, Tae-Woo;Pyo, Hee-Soo;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.259-271
    • /
    • 2008
  • The analytical method of extracting compounds from human blood to examine accumulated organochlorine pesticides (OCPs) has been widely used the traditional liquid-liquid extraction (LLE) method and solid-phase extraction (SPE) method, yet these methods have certain limitations in purification and usafe of a large amount of sample. In order to overcome the se problems reside in these, solid-phase microextraction (SPME), known as a highly efficient extration method with less samples and relatively simple, was employed to collect 18 different kinds of OCPs in blood as extraction method in this study. To optimize extraction method, we examine various experimental SPME-parameters such as adsorption (fiber type, adsorption time, adsorption temperature, salting out effect), and desorption (desorption time, desorption temperature etc.). From the experimental results, the optimal conditions are as follows: fiber was polyacrylate with $85{\mu}m$, adsorption time was for 5 min, adsorption optimum temperature was at $280^{\circ}C$, and salting out effect was NaCl with 0.1 g. MDL, precision and accuracy was in the ranges of 0.05~0.20 ng/mL, 5.59~13.39%, respedively, and accuracy was -0.5% ~24.5% for all OCPs.