DOI QR코드

DOI QR Code

수상이성분계에 의한 1,3-프로판디올 추출특성에 대한 알콜과 카르복실산의 영향

Effect of Alcohols and Carboxylic Acids on Extraction Characteristics for 1,3-Propanediol by Aqueous Two Phases Systems

  • 홍연기 (한국교통대학교 화공생물공학과)
  • Hong, Yeon Ki (Department of Chemical and Biological Engineering, Korea National University of Transportation)
  • Received : 2013.06.03
  • Accepted : 2013.07.05
  • Published : 2013.10.01

Abstract

최근 바이오 플라스틱인 Polytrimethylene terephthalate (PTT)의 원료물질인 1,3-프로판디올의 생물학적 생산이 주목받고 있다. 발효를 통한 1,3-프로판디올의 생산에 있어 부산물로 생성되는 젖산, 숙신산을 포함한 카르복실산들은 1,3-프로판디올의 경제적인 생산을 어렵게 한다. 본 연구에서는 카르복실산 부산물이 포함된 1,3-프로판디올 수용액으로부터 1,3-프로판디올의 효율적 분리정제를 위해 수용성 알콜과 염으로 구성된 수상이성분계를 이용한 추출을 적용하였다. 알콜과 염으로 구성된 수상이성분계 형성은 하부상에 존재하는 염의 염출효과에 의한 것이며 이로 인해 1,3-프로판디올이 상부상으로 이동된다. 추출효율을 알콜의 사슬길이가 짧을수록, 염의 세기가 높을수록 높아졌으며 최대 98%의 회수율을 얻을 수 있었다. 또한 발효 시에 부산물로 형성되는 카르복실산은 1,3-프로판디올과 동반추출 되지 않았으며 1,3-프로판디올의 추출효율에도 영향이 없는 것으로 나타났다. 그러므로 본 연구에서 적용된 친수성 알콜과 염으로 구성된 수상이성분계는 카르복실산 부산물로부터 1,3-프로판디올을 선택적으로 분리하는데 효과적임을 알 수 있다.

1,3-Propandiol is a promising chemical which can be produced from fermentation of glycerol because the application of 1,3-propanediol is mainly in the production of bio-polytrimethylene terephthalate (bio-PTT). However, the cost of downstream processes in the biological production of 1,3-propanediol can make a high portion in the total production cost due to the large amount of water and the by-produced carboxylic acids such as succinic, lactic and acetic acids in 1,3-propanediol fermentation broth. In this study, aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were applied to the recovery of 1,3-propanediol from its artificial aqueous solution. Formation of aqueous biphases in hydrophilic alcohols and phosphate salts was due to the salting-out effect of salts in bottom phase, thereby 1,3-propanediol in bottom phase was moved into top phase. Extraction efficiency for 1,3-propanediol was proportional to the polarity of hydrophilic alcohols and the basicity of salts and the maximum value of extraction efficiency was more than 98%. In the aqueous two-phases systems after extraction, there was no carboxylic acid in top phase. Therefore, it was concluded that the aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were effective for the selective recovery of 1,3-propanediol without any coextraction of carboxylic acids.

Keywords

References

  1. http://www.marketsandmarkets.com/Market-Reports/1-3-propanediolpdo-market-760.html.
  2. Kaur, G., Srivastava, A. K. and Chand, S., "Advanced in Biotechnological Production of 1,3-Propanediol," Biochem. Eng. J., 64, 106-118(2012). https://doi.org/10.1016/j.bej.2012.03.002
  3. Lim, Z., Jiang, B., Zhang, D. and Xiu, Z., "Aqueous Two-Phase Extraction of 1,3-Propanediol from Glycerol-Based Fermentation," Sep. Purif. Technol., 66, 472-478(2009). https://doi.org/10.1016/j.seppur.2009.02.009
  4. Hao, J., Xu, F. and Liu, D., "Downstream Processing of Fermentation Broth," J. Chem. Technol. Biotechnol., 81, 102-108(2006). https://doi.org/10.1002/jctb.1369
  5. Hong, Y. K., "Separation Processes of Biologically Produced 1,3-Propanediol," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 759-765(2012). https://doi.org/10.9713/kcer.2012.50.5.759
  6. Wu, R. C., Xu, Y. Z., Song, Y. Q., Luo, J. A. and Liu, D., "A Novel Strategy for Salts Recovery from 1,3-Propanediol Fermentation Broth by Bipolar Membrane Electrodialysis," Sep. Purif. Technol., 83, 9-14(2011). https://doi.org/10.1016/j.seppur.2011.06.028
  7. Xiu, Z.-L. and Zeng, A.-P., "Present State and Perspective of Downstream Processing of Biologically Produced 1,3-Propanediol and 2,3-Butanediol," Appl. Microbiol. Biotechnol., 78, 917-926 (2008). https://doi.org/10.1007/s00253-008-1387-4
  8. Malinowski, J. J., "Reactive Extraction for Downstream Separation of 1,3-Propanediol," Biotechnol. Prog., 16, 76-79(2000). https://doi.org/10.1021/bp990140g
  9. Jiang, B., Li, Z.-G., Dai, J.-Y., Zhang, D.-J. and Xiu, Z.-L., "Aqueous Two-Phase Extraction of 2,3-Butanediol from Fermentation Broths Using Ethanol/Phosphate System," Process Biochem., 44, 112-117(2009). https://doi.org/10.1016/j.procbio.2008.09.019
  10. Wu, R. C., Ren, H. J., Xu, Y. and Liu, D., "The Final Recover of Salt from 1,3-Propanediol Fermentation Broth," Sep. Purif. Technol., 73, 122-125(2010). https://doi.org/10.1016/j.seppur.2010.03.013
  11. Chen, Z., Liu, H. and Liu, D., "Regulation of 3-Hydroxypropionaldehyde Accumulation in Klebsiella Pneumoniae by Overexpression of dhaT and dhaD Genes," Enzyme Microb. Technol., 45, 305-309(2009). https://doi.org/10.1016/j.enzmictec.2009.04.005
  12. Mourao, T., Claudio, A. F. M., Boal-Palheiros, I., Freire, M. G., and Coutinho, J. A. P., "Evaluation of the Impact of Phosphate Salts on the Formation of Ionic-liquid Based Aqueous Biphasic Systems," J. Chem. Thermodyn., 54, 398-405(2012). https://doi.org/10.1016/j.jct.2012.05.019
  13. Navapara, R. D., Avhad, D. N. and Rathod, V. K., "Application of Response Surface Methodology for Optimization of Bromelain Extraction in Aqueous Two-Phase System," Sep. Sci. Technol., 46, 1838-1847(2011). https://doi.org/10.1080/01496395.2011.578101

Cited by

  1. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.627
  2. 피페리딘계 이온성 액체와 포스페이트 염으로 구성된 수상이성분계를 이용한 숙신산의 추출 vol.54, pp.1, 2013, https://doi.org/10.9713/kcer.2016.54.1.52