• Title/Summary/Keyword: Salting

Search Result 293, Processing Time 0.032 seconds

Studies on the Changes of Lipid Constituents during Gulbi Processing (굴비제조중 지방질성분 변화에 관한 연구)

  • Park, Young-Hee;Song, Eun;Shin, Mal-Shick;Jhon, Deok-Young;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.485-491
    • /
    • 1986
  • Gulbi were made by salting fresh Yellow corvenia (Pseudosciaena manchurica) in three ways; the dry salting method with bay-salt, the dry salting method with purified salt or the abdominal brine injection method with purified salt. Half of the sample was dried by controlling temperature and relative humidity and the other part was dried under the natural condition. The moisture content of the samples were decreased more rapidly by the controlled system than by the natural condition. The lipid content and the iodine values of the muscle and skin of the Gulbi were decreased slowly with laps of drying period. The peroxide values of the sample were increased to its peak after 10 days of drying, and were decreased rapidly thereafter. Both acid values and the thiobarbituric acid values were increased. The deterioration of lipids during Gulbi processing was not notable depending on the salting method, but the natural drying condition affected more severely in their deterioration.

  • PDF

Development of Rapid Salting Method for Seasoning Eggs using a Temperature Change Method (온도 변화 방법을 이용한 조미계란의 신속 가염 방법)

  • Kim, Dong-Ho;Yoo, Hyun-Jae;Yoo, Jae-Yeol;Park, Yeo-Jin;Choi, Suk-Hyun;Jang, Keum-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.393-397
    • /
    • 2012
  • This study developed a rapid egg-salting method using a temperature change in NaCl solution under pressure. The permeation effects(PEs) of NaCl into eggs at ambient pressure were analyzed 1) after soaking them in 20, 30, or 40%(w/v) NaCl solution at $50^{\circ}C$ and 2) after soaking in 20~40% concentrations(w/v) of NaCl solution at $4^{\circ}C$ immediately after soaking at $50^{\circ}C$ for 1 hr(temperature change method; TCM). Under permeation conditions(40% NaCl solution with TCM), the PE of NaCl into eggs at various pressures(4.0~7.0 MPa) was determined. The PE improved with increasing NaCl concentration and pressure. In 40%(w/v) NaCl solution, the PE was more rapid with TCM(0.70% for 2 hr) than without TCM(0.60% for 2 hr). At 7.0 MPa pressure, the PE was more rapid with TCM(1.66% for 15 min) than without TCM(1.40% for 15 min). These results suggest that the TCM-induced contraction of the egg membrane improved the PE. Therefore, we believe that the development of a rapid salting method for seasoning eggs is possible with the TCM.

Diffusion of Salt and Drying Characteristics of Beef Jerky (육포 제조시 염의 확산속도 및 건조 특성)

  • Lee Sin-Woo;Lee Bo-Su;Cha Woen-Suep;Park Joon-Hee;Oh Sang-Lyong;Cho Young-Je;Kim Jong-Kuk;Hong Joo-Heon;Lee Won-Young
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.508-515
    • /
    • 2004
  • In this study, salting conditions and dehydration methods were investigated. Salting time, concentration and temperature could be considered to variables in salting conditions. The diffused salt amounts to beef jerky depending on time are sharply increased in two hours. This result is caused by the difference decrease of concentration gradient between bulk solution and beef jerky. The increase of salting concentration and temperature resulted also in the increase of a diffused salt. The deeper bulk concentration made diffusion to beef easily with the bigger driving force and the movement of molecules is more active according to temperature increase. Dehydration is conducted with various methods such as natural drying, cold air drying and hot air drying. Comparing with color and texture among the drying methods, cold air drying showed superior quality in color and texture. Beef jerky by cold air drying colored more reddish than other drying methods and good cutting shear stress and tensile strength. In case of hardness and chewiness, hot air drying method showed the highest value, which means the worst texture.

Studies on the chages in Free Amono Acids of Yellow Corvenia(Pseudosciaena manchurice) during Gulbi processing (굴비제조중 유리아미노산의 변화에 관한 연구)

  • Na, An-Hee;Shin, Mal-Shick;Jhon, Deok-Young;Hong, Youn-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.263-275
    • /
    • 1986
  • Gulbi were processed by salting Yellow corvenia (Pseudosciaena manchurica) with in three ways: the dry salting method with bar salt, the dry salting method with purified salt or with the abdominal brine injection method with purified salt. The half of the sample was dried by the control system of temperature and humidity; the other part was dried by the natural condition. The moisture content of fresh Yellow corvenia muscle and eggs were 76.8%, and 68.2% while those of dried samples decreased to 57.7% and 45.3%, respectively. The total nitrogen content of fresh muscle and eggs were 11.0g% and 7.6g%, respectively (dry weight basis), which decreased slightly during salting and showed no significant changes during drying prosess. The protein nitrogen content of fresh muscle and eggs were 10.2g% and 7.5g%, which decreased during Gulbi processing. On the other hand, the nonprotein nitrogen content of both muscle and eggs increased. The content of free amino acids of fresh muscle and eggs were 508.8mg/100g and 1,110.6mg/100g, which increased to between 5.3 and 2.7 times, respectively after 25 days of drying. The composition patterns of free amino acids in muscle and eggs were similar to each other. The four amino acids - Ala, Glu, Lys and Leu - were most abundant in both fresh and dried samples. These amino acids are known as taste and flavour constituents.

  • PDF

Changes in the Texture and Salt Content of Chinese Cabbage Using Different Salting Methods (절임 방법에 따른 배추 조직 및 염도 변화)

  • Lee, Myung-Ki;Yang, Hye-Jung;Woo, Ha-Na;Rhee, Young-Kyoung;Moon, Sung-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1184-1188
    • /
    • 2011
  • This study analyzed changes in the texture and salt content of Chinese cabbage after salting using different methods to determine the effects of low salt brining. To verify the possibility of brining under low salt concentration, Chinese cabbage was salted with 1%, 2%, 6%, and 10% salt solutions by pressing, pressure reduction, or steaming. After salting, the firmness (g, determined using the puncture test) of the Chinese cabbage changed according to the brining methods used, however, an increasing trend in rigidity was observed as the salinity increased. Because the power applied during pressing or pressure reduction treatments is higher, the firmness of and penetration time on the surface of the brined Chinese cabbages after these treatments increased more in the 6% salt solution cabbage. Additionally, the Chinese cabbages treated with steam showed significantly higher firmness and penetration time than those treated by pressing and pressure reduction. As a result of pressing the 6% salt concentrated cabbage with 1.35 $kg{\cdot}f/cm^2$, a pressure reduction from 250 mmHg, and steaming at 100$^{\circ}C$ for 1 min, the cabbage had roughly 2% of the salt concentration, ultimately. These physical treatments of pressing, pressure reduction, and steaming could be used as new methods for preparing salted Chinese cabbage with low salt concentrations for general use.

Processing Conditions of Salted Anchovy 2. Changes of Taste Compounds during Processing of Salted Anchovy by Salting Methods (염장 멸치의 제조조건 2. 염장방법에 따른 염장 멸치의 가공 중 맛성분의 변화)

  • CHO Young-Je;SHIM Kil-Bo;JU Jung-Mi;KIM Tae-Jin;YOOK Ji-Hee;CHO Min-Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • We investigated the changes of free amino acid, ATP related compounds and sensory evaluation during ripening of dry or brine salted-anchovy. The total free amino acid content of the salted-anchovy ripened at $20^{\circ}C$ was higher than that of the salted-anchovy ripened at $5^{\circ}C.$ The IMP content of raw anchovy was higher than that of any other ATP related compound and decreased rapidly during ripening, resulting in increased hypoxanthin (Hx). The sensory evaluation results indicated 5 and 4 months for dry and brine salted-anchovy, respectively, as the minimum time required to obtain an adequate ripened salted-anchovy. We concluded that processing condition of ripened salted-anchovy was to ripened for 5 months at $5^{\circ}C$ by drying salting method.

Glucosinolate and isothiocyabate contents according to processing of Kimchi cabbage (Brassica rapa L. ssp. pekinensis) (배추의 가공에 따른 glucosinolates 및 isothiocyanates 함량 변화)

  • Jang, Miran;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.367-373
    • /
    • 2017
  • This study examined the total glucosinolate (GSL) and isothiocyanate (ITC) contents according to different processing conditions; fresh Kimchi cabbage (Brassica rapa L. ssp. pekinensis), salted Kimchi cabbage and kimchi (storage temperature $4^{\circ}C$ and $20^{\circ}C$) using two different cultivars (Bomatnorang and Chunkwang). Four GSL peaks representing gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin were detected in Kimchi cabbage by HPLC and HPLC/MS analysis. The total GSL contents of fresh Kimchi cabbage of Bomatnorang and Chunkwang were $21.37{\pm}1.06{\mu}g/g$ dry weight (DW) and $20.96{\pm}3.33{\mu}g/g$ DW, respectively. After salting, the total GSL contents of salted Kimchi cabbage decreased by 39% and 52% in Bomatnorang and Chunkwang, respectively. Finally, the total GSL contents of kimchi after storage at $20^{\circ}C$ decreased by 83% and 56% in Bomatnorang and Chunkwang, respectively. The extracted ITC contents were analyzed by GC/MS. Three ITC peaks were detected in Kimchi cabbage representing 2-phenylethyl ITC, 3-butenyl ITC and 4-pentenyl ITC. The 2-phenylethyl ITC levels increased during the salting process but this generally fell during storage at $20^{\circ}C$ as kimchi. The 3-butenyl ITC levels of Kimchi cabbage according to processing decreased rapidly due to salting and then decreased slowly during storage as kimchi. The 4-pentenyl ITC of Kimchi cabbage was lost during the salting process. The results for the change in GSL and ITC contents during the kimchi making process will be used in the food industry.

Change of Harmful Micnoorganisms in Pickling Process of Salted Cabbage According to Salting and Washing Conditions (배추김치의 절임공정 조건에 따른 위해미생물 변화)

  • Kim, Jin-Hee;Lee, Yu-Keun;Yang, Ji-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.417-423
    • /
    • 2011
  • Salted Cabbage products purchased from different companies at 4 different districts in South Korea were detected in this study. Cabbage and salt are the main materials for kimchi manufacture. The results of general bacteria contaminated in the samples were $1.4{\times}10^5$, $6.4{\times}10^5$, $1.7{\times}10^7$, $3.6{\times}10^7$ CFU/g in cabbage and $2.7{\times}10^3$ CFU/g in salt, respectively. The results of coliforms were detected as $2.4{\times}10^4$ CFU/g, and there was no Escherichia coli in any sample. Staphylococcus aureus was detected in cabbage as $9.9{\times}10^2$, $8.0{\times}10^1$, and $3.0{\times}10^3$ CFU/g, Bacillus cereus was also found in cabbage as $4.1{\times}10^3$ and $1.0{\times}10^1$ CFU/g. The results of Campylobacter jejuni and Vibrio paraheamolyticus were $2.4{\times}10^6$ and $1.0{\times}10^4$ CFU/g in cabbage, respectively. $1.0{\times}10^3$ CFU/g for Yersinia enterocolitica was determined in salt. In case of Listeria monocytogenes, the results were $1.5{\times}10^1$, $1.1{\times}10^2$, and $4.5{\times}10^1$ CFU/g in cabbage. Total batcteria ranged from $1.4{\times}10^1$ to $4.4{\times}10^5$ CFU/g were detected in salting solution, from $1.5{\times}10^4$ to $1.2{\times}10^8$ CFU/g in dehydrated salted-cabbage, from $9.4{\times}10^4{\sim}1.3{\times}10^8$ CFU/g in minced salted-cabbage. The results of E. coli in samples from different companies were different from one to anther. The results of the contamination of S. aureus and B. cereus showed positive in salting solution and dehydrated salted-cabbage at a portion of companies. V. paraheamolyticus was detected in salting solution. The contamination of Y. enterocolitica ranged from $9.5{\times}10^2$ to $1.8{\times}10^3$ CFU/g in salting solution, from $1.7{\times}10^1$ to $2.7{\times}10^2$ CFU/g in dehydrated salted-cabbage, from $1.2{\times}10^2$ to $1.3{\times}10^8$ CFU/g in minced salted-cabbage. The contamination of L. monocytogenes ranged from $8.0{\times}10^2$ to $1.7{\times}10^4$ CFU/g in salting solution, from $2.8{\times}10^2$ to $1.2{\times}10^4$ CFU/g in dehydrated salted-cabbage. During the manufacture processing of Kim chi, microorganisms were detected in cabbages salted in different concentrations of salt solution at 8%, 10%, 12% and 15% for 5-20 hours. As the results, $3.5{\times}10^5-1.7{\times}10^6$, $3.4{\times}10^5-2.5{\times}10^6$, $5.4{\times}10^5-2.3{\times}10^6$, $4.0{\times}10^5-2.3{\times}10^6$ CFU/g were detected for E. coli in samples at different treatment conditions. $1.9{\times}10^4-4.1{\times}10^4$, $4.1{\times}10^3-2.8{\times}10^4$, $1.5{\times}10^3-7.8{\times}10^3$, $2.2{\times}10^4-6.6{\times}10^4$ CFU/g were detected for S. aureus in samples at different treatment conditions. Salmonella typhimurium was detected in salted cabbage with various salt concentration after salting for 5 hrs, the result ranged from $2.5{\times}10^5$ to $3.8{\times}10^6$ CFU/g, and change of microorganism was the smallest in salted cabbage under the concentration of salting solution at 10% for 15 hours. The cabbage salted in 10% salting solution for 15 hours were washed with water for 2 and 3 times, with chlorine for 3 times, and with acetic acid for 3 times. E. coli was detected in the samples washed with water for 2 and 3 times, washed with chlorine for 3 times. The contamination of S. aureus was $3.0{\times}10^5$ CFU/g in the samples washed with water for 2 times, $5.6{\times}10^3$ CFU/g in the samples washed with acetic acid for 3 times, $3.6{\times}10^5$ CFU/g in the samples washed with water for 3 times and same amount in the samples washed with chlorine for 3 times. According to the results, the contamination of S. aureus was $5.6{\times}10^3$ CFU/g lower in samples washed with chlorine and acetic acid than that in samples washed with water. In case of S. typhimurium, it has been detected in samples washed with water and chlorine, $3.0{\times}10^1$ CFU/g as the lowest concentration among all the samples was measured in the samples washed with acetic acid for 3 times.

Diffusion of Sodium Chloride in Chinese Cabbage during Salting (배추의 염절임중 소금의 확산에 관한 연구)

  • Cho, Hyung-Yong;Kim, Ju-Bong;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.711-717
    • /
    • 1988
  • The diffusivity of sodium chloride in Chinese cabbage was evaluated from its absorption data obtained by immersing the cabbage stalk in a salt solution. By using least squares method, the absorption and desorption diffusivity of NaCl in the cabbage stalk have been estimated to be $1.7{\times}10^{-11}$ and $11.6{\times}10^{-11}m^2/s$, respectively. The apparent diffusivity was not strongly dependent on the concentration of brine and the variety of Chinese cabbage. The influence of temperature on the apparent diffusivity could be expressed as the Arrhenius type equation, in which the activation energy was estimated to be 66 KJ/mol.

  • PDF