• 제목/요약/키워드: Salt-tolerance

검색결과 438건 처리시간 0.027초

애기장대 H+-PPase(AVP1) 과발현 배추에서 바이오매스 증가와 내염성 향상 (Increased biomass and enhanced tolerance to salt stress in Chinese cabbage overexpressing Arabidopsis H+-PPase (AVP1))

  • 박미희;원희연;김창길;한증술
    • Journal of Plant Biotechnology
    • /
    • 제39권4호
    • /
    • pp.253-260
    • /
    • 2012
  • 애기장대 액포 소재 $H^+$-PPase(AVP1)의 과발현이 농업적으로 가치 있는 표현형을 나타낸다는 기 보고에 기초하여, AVP1 발현이 다른 종에서도 일관되게 바이오매스를 증가시키고 염에 대한 내성을 향상시키는지를 확인하기 위하여 본 연구에서는 AVP1 형질전환 배추 식물체를 획득한 후 고정계통을 육성하여 생리검정 재료로 사용하였다. 형질전환 배추 유식물체는 비형질전환 유식물체에 비해 생장이 왕성하였으며 염스트레스에 대한 내성도 강하였다. 정상 재배조건에서 생장시킨 유식물체의 생체중과 건물중을 비교함으로써 형질전환에 의한 바이오매스증가 표현형을 확인하였으며 MS 염과 NaCl로 점차 염스트레스를 강화시키는 조건에서 광계II 양자수율을 추적, DAB 염색 실시 및 최종적으로 용토 탈염 후 회복 실험을 수행함으로써 내염성 향상 표현형을 확인하였다.

방사선 유도 내염성 증진 사료용 옥수수 돌연변이체 특성 분석 (Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant)

  • 조철오;김경화;최만수;전재범;서미숙;정남희;진민아;손범영;김둘이
    • 한국육종학회지
    • /
    • 제51권4호
    • /
    • pp.318-325
    • /
    • 2019
  • 식물은 다양한 환경 스트레스에 적응하기 위해 스트레스 내성 유전자의 발현과 자연 돌연변이를 통해 외부 환경 및 자극에 대한 반응 특성을 강화시켜 왔다 본 연구는 사료용 옥수수를 대상으로 감마선을 이용하여 돌연변이 집단을 구축하고 내염성이 증대된 계통을 개발하고자 수행되었다. 140RS516은 NaCl 처리 조건에서 대조군인 KS140과 비교하여 증가된 염 스트레스 내성을 보였다. 감마선에 의한 다양한 유전변이를 보인 140RS516 식물체는 염 스트레스 조건에서 대조군보다 높은 발아율과 생장, 기공전도도 그리고 proline함량을 나타냈으며, 내염성에 관여하는 유전자들의 발현이 증가하였다. 따라서 본 연구를 통해 개발된 140RS516 옥수수는 간척지 염화토양과 같이 불량한 환경에서 작물 재배 및 생산이 가능한 내염성 품종을 개발하기 위한 육종 소재로 활용될 수 있을 것이다.

Ethyl methane sulfonate(EMS)에 의해 변이된 애기장대 종자 집단으로부터 염 내성 돌연변이체 선발 및 특성 분석 (Isolation and characterization of ethyl methane sulfonate(EMS) Arabidopsis mutants capable of germination under saline conditions.)

  • 정문수;정정성;김철수
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.641-645
    • /
    • 2007
  • 염 내성 돌연변이체를 선발하기 위하여, ethyl methane sulfonate(EMS)로 처리된 돌연변이 종자 집단을 사용하였다. 150 mM NaCl 고염 스트레스 하에서 종자 발아 내성을 보이는 세 종류의 EMS 돌연변이체를 선발하였다. 세 종류의 EMS 돌연변이체들 중, salt tolerance 42-14(sto42-14) 돌연변이체는 175 mM NaCl 고농도에서 종자 발아율이 대조구(WT)에 비해 7배 이상의 높은 발아율을 보였다. 또한 내염성 sto42-14 돌연변이체는 glucose(Glc)에 대해서도 비감수성을 갖고 있음을 관찰되었고, 흥미롭게도 sto42-14돌연변이체에 $20{\mu}M$ gibberellin(GA)을 처리한 결과, 대조구에 비해 하배축과 뿌리의 생장이 억제됨을 관찰할 수 있었다. 이러한 결과를 바탕으로, 고염 내성 sto42-14 돌연변이체는 Glc 뿐만 아니라 GA호르몬 반응에도 관련되어져 있음을 알 수 있다.

Induced Systemic Drought and Salt Tolerance by Pseudomonas chlororaphis O6 Root Colonization is Mediated by ABA-independent Stomatal Closure

  • Cho, Song-Mi;Kang, Beom-Ryong;Kim, Jeong-Jun;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.202-206
    • /
    • 2012
  • Root colonization by the rhizobacterium Pseudomonas chlororaphis O6 in Arabidopsis thaliana Col-0 plants resulted in induced tolerance to drought and salinity caused by halide salt-generated ionic stress but not by osmotic stress caused by sorbitol. Stomatal apertures decreased following root colonization by P. chlororaphis O6 in both wild-type and ABA-insensitive Arabidopsis mutant plants. These results suggest that an ABA-independent stomatal closure mechanism in the guard cells of P. chlororaphis O6-colonized plants could be a key phenotype for induced systemic tolerance to drought and salt stress.

Expression of yeast Hem1 gene controlled by Arabidopsis HemA1 promoter improves salt tolerance in Arabidopsis plants

  • Zhang, Zhi-Ping;Yao, Quan-Hong;Wang, Liang-Ju
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.330-336
    • /
    • 2010
  • 5-Aminolevulinate (ALA) is well-known as an essential biosynthetic precursor of all tetrapyrrole compounds, which has been suggested to improve plant salt tolerance by exogenous application. In this work, the gene encoding aminolevulinate synthase (ALA-S) in yeast (Saccharomyces cerevisiae Hem1) was introduced into the genome of Arabidopsis controlled by the Arabidopsis thaliana HemA1 gene promoter. All transgenic lines were able to transcribe the YHem1 gene, especially under light condition. The chimeric protein (YHem1-EGFP) was found co-localizing with the mitochondria in onion epidermal cells. The transgenic Arabidopsis plants could synthesize more endogenous ALA with higher levels of metabolites including chlorophyll and heme. When the $T_2$ homozygous seeds were cultured under NaCl stress, their germination and seedling growth were much better than the wild type. Therefore, introduction of ALA-S gene led to higher level of ALA metabolism with more salt tolerance in higher plants.

Inhibitions of $H^+$-ATPases and Ion Channels by Lanthanum

  • Kim, Young-Kee;Cho, Kwang-Hyun;Park, Soo-Jin
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.39-39
    • /
    • 2001
  • Many physiological processes of plant cells, such as nutrient uptake, salt tolerance, and cell enlargement, are mediated by ion transports across the plasma membrane. H$^{+}$-ATPases on both plasma and vacuolar membranes play major roles on active transports and ion channels mediate passive transports of various ions. It has been known that these proteins involved in cellular osmotic regulation and salt tolerance in the salt-accumulated soils.(omitted)

  • PDF

Comparative Response of Callus and Seedling of Jatropha curcas L. to Salinity Stress

  • Kumar, Nitish;Kaur, Meenakshi;Pamidimarri, D.V.N. Sudheer;Boricha, Girish;Reddy, Muppala P.
    • Journal of Forest and Environmental Science
    • /
    • 제24권2호
    • /
    • pp.69-77
    • /
    • 2008
  • Jatropha curcas L. is an oil bearing species with many uses and considerable economic potential as a biofuel crop. Salt stress effect on growth, ion accumulation, contents of protein, proline and antioxidant enzymes activity was determined in callus and seedling to understand the salt tolerance of the species. Exposure of callus and seedling to salt stress reduced growth in a concentration dependent manner. Under salt stress Na content increased significantly in both callus and seedling whereas, differential accumulation in the contents of K, Ca, and Mg was observed in callus and seedling. Soluble protein content differed significantly in callus as compared to seedling, however proline accumulation remained more or less constant with treatments. The proline concentration was ~2 to 3 times more in callus than in seedling. Salt stress induced qualitative and quantitative differences in superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7) in callus and seedling. Salt induced changes of the recorded parameters were discussed in relation to salinity tolerance.

  • PDF

Metabolic changes during adaptation to saline condition and stress memory of Arabidopsis cells

  • Chun, Hyun Jin;Park, Mi Suk;Lee, Su Hyeon;Jin, Byung-Jun;Cho, Hyun Min;Hong, Young-Shick;Kim, Min Chul
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.175-175
    • /
    • 2017
  • To understand molecular mechanisms underlying adaptation of plant cells to saline stress and stress memory, we developed Arabidopsis callus suspension-cultured cells adapted to high salt. Adapted cells to high salt exhibited enhanced tolerance compared to control cells. Moreover, the salt tolerance of adapted cells was stably maintained even after the stress is relieved, indicating that the acquired salt tolerance of adapted cells was memorized. In order to characterize metabolic responses of plant cells during adaptation to high salt stress as well as stress memory, we compared metabolic profiles of salt-adapted and stress-memorized cells with control cells by using NMR spectroscopy. A principle component analysis showed clear metabolic discrimination among control, salt-adapted and stress-memorized cells. Compared with control cells, metabolites related to shikimate metabolism such as tyrosine, and flavonol glycosides, which are related to protective mechanism of plant against stresses were largely up-regulated in adapted cell lines. Moreover, coniferin, a precursor of lignin, was more abundant in salt-adapted cells than control cells. Cell morphology analysis using transmission electron microscopy indicated that cell wall thickness of salt-adapted cells was significantly induced compared to control cells. Consistently, salt adapted cells contained more lignin in their cell walls compared to control cells. The results provide new insight into mechanisms of plant adaptation to saline stress as well as stress memory in metabolic level.

  • PDF

Evaluation and classification of selected rice varieties for salinity tolerance at seedling stage

  • Lee, Seung-Yeob;Ahn, Jeong-Ho;Kwon, Tae-Oh
    • 한국작물학회지
    • /
    • 제48권4호
    • /
    • pp.339-344
    • /
    • 2003
  • To identify the new source of breeding materials for rice salt tolerance, the salinity tolerance of thirty-four varieties was evaluated under 0.5% saline condition at seedling stage. The salinity score showed highly significant correlations to dry weight and dead leaf ratio. The tested varieties were classified into three groups by visual score, reduction ratio of dry weight, and dead leaf ratio. Eighteen varieties were classified as the highly tolerant group (salinity scores of 1.3-3.7), seven varieties were fallen into the tolerant group (salinity scores of 4.2-5.8), and others were susceptible (salinity scores of 6.7-9.0). In highly tolerant group, most indica varieties including Getu, Dikwee and Kuatic Putic, didn't exsert a panicle under the Korean climate. But six varieties, Xiangcho V, Annapuruna, HP 3319-2wx-6-3-1, Giza 175, and GZ 2447-S-17, GZ 4255-6-3 were suitable to the Korean climate, and their heading date (6-16, August) and culm length (65-78㎝) were similar to the Korean varieties. Accordingly, these varieties can be utilized as crossing materials for the salt tolerance in japonica rice.

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF