DOI QR코드

DOI QR Code

Increased biomass and enhanced tolerance to salt stress in Chinese cabbage overexpressing Arabidopsis H+-PPase (AVP1)

애기장대 H+-PPase(AVP1) 과발현 배추에서 바이오매스 증가와 내염성 향상

  • Park, Mehea (Vegetable Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Won, Hee-Yeun (Vegetable Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Department of Ecological Science, Graduate School, Kyungpok National University) ;
  • Kim, Chang Kil (Department of Horticultural Science, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Han, Jeung-Sul (Department of Ecological Environment, College of Ecology & Environmental Science, Kyungpook National University, Department of Ecological Science, Graduate School, Kyungpok National University)
  • 박미희 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 원희연 (농촌진흥청 국립원예특작과학원 채소과, 경북대학교 대학원 생태과학과) ;
  • 김창길 (경북대학교 농업생명과학대학 원예과학과) ;
  • 한증술 (경북대학교 생태환경대학 생태환경전공, 경북대학교 대학원 생태과학과)
  • Received : 2012.11.01
  • Accepted : 2012.11.16
  • Published : 2012.12.31

Abstract

On the basis of the reported agriculturally valuable phenotypes resulted from ectopic overexpression of Arabidopsis vacuolar $H^+$-PPase (AVP1), we generated the Chinese cabbage lines expressing AVP1 which then subjected to salt stress to determine the AVP1 expression if it consistently confers the capability for increasing biomass and enhancing tolerance to salinity in other species. Collectively, here we demonstrate that the transgenic young plants show more vigorous growth and higher tolerance to salt stress than wild-type ones. Increased biomass phenotype by AVP1 expression was supported by comparing fresh and dry weights of transgenic and wild type plants grown under normal condition, while higher salt tolerance trait was confirmed by tracing the kinetics of photosystem II quantum yield and DAB-staining under gradually intensified salt stress induced by MS salt or NaCl, followed by normal condition.

애기장대 액포 소재 $H^+$-PPase(AVP1)의 과발현이 농업적으로 가치 있는 표현형을 나타낸다는 기 보고에 기초하여, AVP1 발현이 다른 종에서도 일관되게 바이오매스를 증가시키고 염에 대한 내성을 향상시키는지를 확인하기 위하여 본 연구에서는 AVP1 형질전환 배추 식물체를 획득한 후 고정계통을 육성하여 생리검정 재료로 사용하였다. 형질전환 배추 유식물체는 비형질전환 유식물체에 비해 생장이 왕성하였으며 염스트레스에 대한 내성도 강하였다. 정상 재배조건에서 생장시킨 유식물체의 생체중과 건물중을 비교함으로써 형질전환에 의한 바이오매스증가 표현형을 확인하였으며 MS 염과 NaCl로 점차 염스트레스를 강화시키는 조건에서 광계II 양자수율을 추적, DAB 염색 실시 및 최종적으로 용토 탈염 후 회복 실험을 수행함으로써 내염성 향상 표현형을 확인하였다.

Keywords

References

  1. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar $Na^+/H^+$ antiport in Arabidopsis. Science 285:1256-1258 https://doi.org/10.1126/science.285.5431.1256
  2. Dionisio-Sese M, Tobita S (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J Plant Physiol 157:54-58 https://doi.org/10.1016/S0176-1617(00)80135-2
  3. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL (2001) Drought- and salt-tolerant plants results from over-expression of the AVP1 $H^+$-pump. PNAS 98:11444-11449 https://doi.org/10.1073/pnas.191389398
  4. Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electro transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87-92 https://doi.org/10.1016/S0304-4165(89)80016-9
  5. Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S et al. (2010) Increased leaf size: Different means to an end. Plant Physiol 153:1261-1279 https://doi.org/10.1104/pp.110.156018
  6. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149-190 https://doi.org/10.1146/annurev.pp.31.060180.001053
  7. Guan Q, Takano T, Liu S (2012) Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa. PLOS ONE 7:1-8
  8. Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene siliencing by double-stranded RNA. Nature Genetics 2:110-119 https://doi.org/10.1038/35052556
  9. Han (2010) Suppression of tobamovirus movement toward upper leaves in the tomato plant over-expressing a maize calreticulin. J Plant Biotechnol 37:567-573 https://doi.org/10.5010/JPB.2010.37.4.567
  10. Han JS, Oh DG, Mok IG, Park HG, Kim CK (2004) Efficient plant regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep 23:291-296 https://doi.org/10.1007/s00299-004-0846-3
  11. Hirschi K (2001) Vacuolar $H^+/Ca^{2+}$ transport: who's directing the traffic? Trend Plant Sci 6:100-104 https://doi.org/10.1016/S1360-1385(00)01863-X
  12. Holsters M, De Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of A. tumefaciens. Mol Gen Genet 163:181-187 https://doi.org/10.1007/BF00267408
  13. Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T et al. (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103-111 https://doi.org/10.1023/A:1006408712416
  14. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346-350 https://doi.org/10.1093/pcp/pch037
  15. Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A et al. (2005) Arabidopsis $H^+$-PPase AVP1 regulates auxin-mediated organ development. Science 310:121-125 https://doi.org/10.1126/science.1115711
  16. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. PNAS 97:3730-3734 https://doi.org/10.1073/pnas.97.7.3730
  17. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945 https://doi.org/10.1126/science.280.5371.1943
  18. Park BJ, Liu Z, Kanno A, Kameya T (2005a) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553-558 https://doi.org/10.1016/j.plantsci.2005.05.008
  19. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S et al. (2005b) Up-regulation of a H+-pyrophosphatase ($H^+$-PPase) as a strategy to engineer drought-resistant crop plants. PNAS 102:18830-18835 https://doi.org/10.1073/pnas.0509512102
  20. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P et al. (2011) Expression of an Arabidopsis vacuolar $H^+$-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotech J 9:88-99 https://doi.org/10.1111/j.1467-7652.2010.00535.x
  21. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane $Na^+/H^+$ exchanger in Arabidopsis thaliana, by SOS2. PNAS 99:8436-8441 https://doi.org/10.1073/pnas.122224699
  22. Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011-1019 https://doi.org/10.1023/A:1006095015717
  23. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14 Suppl.:S401-S417 https://doi.org/10.1105/tpc.002899
  24. Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. PNAS 89:1775-1779 https://doi.org/10.1073/pnas.89.5.1775
  25. Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3-12
  26. Takasaki T, Hatakeyama K, Hinata K (2004) Effect of silver nitrate on shoot regeneration and Agrobacterium-mediated transformation of turnip (Brassica rapa L. var. rapifera). Plant Biotechnol 21:225-228 https://doi.org/10.5511/plantbiotechnology.21.225
  27. Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K (1997) Factors influencing Agrobacterium-mediated transformation of Brassica rapa L. Breed Sci 47:127-134
  28. Topfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890(abstr.) https://doi.org/10.1093/nar/15.14.5890
  29. Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515-523 https://doi.org/10.1016/S0168-9452(02)00159-0
  30. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14 https://doi.org/10.1007/s00425-003-1105-5
  31. Wu Q, Lin J, Liu JZ, Wang X, Lim W, Oh M et al. (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol J 10:945-955 https://doi.org/10.1111/j.1467-7652.2012.00723.x
  32. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK et al. (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotech J 5:735-745 https://doi.org/10.1111/j.1467-7652.2007.00281.x
  33. Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711-717 https://doi.org/10.1023/A:1006201910593
  34. Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar $H^+$-pyrophosphatase by N,N '-dicyclohexylcarbodiimide. J Biol Chem 272:22340-22348 https://doi.org/10.1074/jbc.272.35.22340
  35. Zhu JK (2001) Plant salt tolerance. Trend Plant Sci 6:66-71 https://doi.org/10.1016/S1360-1385(00)01838-0
  36. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441-445 https://doi.org/10.1016/S1369-5266(03)00085-2

Cited by

  1. Assessments of salt tolerance in a bottle gourd line expressing theArabidopsisH+-pyrophosphataseAVP1gene and in a watermelon plant grafted onto a transgenic bottle gourd rootstock vol.134, pp.2, 2015, https://doi.org/10.1111/pbr.12253
  2. Ectopic expression of Arabidopsis H+-pyrophosphatase AVP1 enhances drought resistance in bottle gourd (Lagenaria siceraria Standl.) vol.118, pp.3, 2014, https://doi.org/10.1007/s11240-014-0490-8
  3. Absence of AVP1 transcripts in wild type watermelon scions grafted onto transgenic bottle gourd rootstocks vol.42, pp.1, 2015, https://doi.org/10.5010/JPB.2015.42.1.13
  4. Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase vol.40, pp.3, 2013, https://doi.org/10.5010/JPB.2013.40.3.156