Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.5.330

Expression of yeast Hem1 gene controlled by Arabidopsis HemA1 promoter improves salt tolerance in Arabidopsis plants  

Zhang, Zhi-Ping (College of Horticulture, Nanjing Agricultural University)
Yao, Quan-Hong (College of Horticulture, Nanjing Agricultural University)
Wang, Liang-Ju (College of Horticulture, Nanjing Agricultural University)
Publication Information
BMB Reports / v.43, no.5, 2010 , pp. 330-336 More about this Journal
Abstract
5-Aminolevulinate (ALA) is well-known as an essential biosynthetic precursor of all tetrapyrrole compounds, which has been suggested to improve plant salt tolerance by exogenous application. In this work, the gene encoding aminolevulinate synthase (ALA-S) in yeast (Saccharomyces cerevisiae Hem1) was introduced into the genome of Arabidopsis controlled by the Arabidopsis thaliana HemA1 gene promoter. All transgenic lines were able to transcribe the YHem1 gene, especially under light condition. The chimeric protein (YHem1-EGFP) was found co-localizing with the mitochondria in onion epidermal cells. The transgenic Arabidopsis plants could synthesize more endogenous ALA with higher levels of metabolites including chlorophyll and heme. When the $T_2$ homozygous seeds were cultured under NaCl stress, their germination and seedling growth were much better than the wild type. Therefore, introduction of ALA-S gene led to higher level of ALA metabolism with more salt tolerance in higher plants.
Keywords
Arabidopsis thaliana HemA1 promoter (AtHemA1 promoter); Saccharomyces cerevisiae Hem1 gene; Salt tolerance; Transgenic plant; 5-Aminolevulinic acid (ALA);
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Weigel, D. and Glazebrook, J (2002) Arabidopsis: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, USA.
2 Harel, E. and Klein, S. (1972) Light dependent formation of 5-aminolevulinic acid in etiolated leaves of higher plants. Biochem. Biophys. Res. Commun. 49, 364-370.   DOI   ScienceOn
3 Mauzerall, D. and Cranick, S. (1956) The occurrence and determination of ${\delta}-aminolevulinic$ acid and porphobilinogen in urine. J. Biol. Chem. 219, 435-446.
4 Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382.   DOI
5 Lombardo, M. E., Araujo, L.S. and Batlle, A. (2003) 5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi. Int. J. Biochem. Cell. Biol. 35, 1263-1271.   DOI   ScienceOn
6 Zhang, Z. P., Wang, L. J. and Yao, Q. H. (2007) Expression of Saccharomyces cerevisiae Hem1 recombined with Arabidopsis thaliana HemA1 promoter in transgenic tobacco. Acta. Bot. Boreal.-Occident. Sin. 27, 1929-1936. (in Chinese with English abstract)
7 Zhang, Z. P., Wang, L. J. and Yao, Q. H. (2008) Study on leaf photosynthesis and chlorophyll fluorescence of transgenic tobacco over-producing 5-aminolevulinic acid (ALA). Acta. Bot. Boreal.-Occident. Sin. 28, 1196-1202. (in Chinese with English abstract)
8 Huang, L. Q. and Castelfranco, P. A. (1988) A re-examination of 5-aminolevulinic acid synthesis by isolated intact developing chloroplasts: the $O_2$ requirement in the light. Plant Sci. 54, 185-192.   DOI   ScienceOn
9 Masuda, T., Ohta, H., Shioi, Y. and Takamiya, K. I. (1996) Light regulation of 5-aminolevulinic acid-synthesis system in Cucumis sativus: light stimulates activity of glutamyltRNA reductase during greening. Plant Physiol. Biochem. 34, 11-16.
10 Huang, B. K., Xu, S., Xuan, W., Li, M., Cao, Z.Y., Liu, K. L., Ling, T. F. and Shen, W. B. (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J. Integrative Plant Biology 48, 249-254.   DOI   ScienceOn
11 Zhang, Z. J., Li, H. Z., Zhou, W. J., Takeuchi, Y. and Yoneyama, K. (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul. 49, 27-34.
12 Abdelkader, A. F., Aronsson, H. and Sundqvist, C. (2007) High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiol. Plant 130, 157-166.   DOI   ScienceOn
13 Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.   DOI   ScienceOn
14 Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497.   DOI
15 Youssef, T. and Awad, M. A. (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J. Plant Growth Regul. 27, 1-9.   DOI
16 Hofgen, R., Axelsen, K. B., Kannangra, C. G., Schüttke, I., Pohlenz, H. D., Willmitzer, L., Grimm, B. and von, Wettstein. D. (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate 1-semialdehyde aminotransferase antisense gene. Proc. Natl. Acad. Sci. U.S.A. 91, 1726-1730.   DOI
17 Zavgorodnyaya, A., Papenbrock, J. and Grimm, B. (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J. 12, 169-178.   DOI   ScienceOn
18 McCormac, A. C., Fischer, A., Kumar, A. M., Soll, D. and Terry, M. J. (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J. 25, 549-561.   DOI   ScienceOn
19 Jung. S., Yang. K., Lee, D. and Back, K. (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci. 167, 789-795.   DOI   ScienceOn
20 Jung, S., Back, K., Yang, K., Kuk, Y. I. and Chon, S. U. (2008) Defence response produced during photodynamic damage in transgenic rice overexpressing 5-aminolevulinic acid synthase. Photosynthetica 46, 3-9.   DOI
21 Munns, R. (2002) Comparative physiology of salt and water stress. Plant. Cell. Environ. 25, 239-250.   DOI   ScienceOn
22 Wang, W. X., Vinocur, B. and Altman, A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14.   DOI
23 Von Wettstein. D., Gough, S. and Kannangara, C. G. (1995) Chlorophyll biosynthesis. Plant Cell. 7, 1039-1057.   DOI   ScienceOn
24 Heinemann, I. U., Jahn, M. and Jahn, D. (2008) The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474, 238-251.   DOI   ScienceOn
25 Watanabe, K., Tanaka. T, Hotta, Y., Kuramochi, H. and Takeuchi, Y. (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32, 99-103.
26 Wang, L. J., Jiang, W. B., Liu, H., Liu, W. Q., Kang, L. and Hou, X. L. (2005) Promotion of 5-aminolevulinic acid on germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J. Integr. Plant Biol. 9, 1084-1091.
27 Nishihara, E., Kondo, K., Parvez, M. M., Takahashi, K., Watanabe, K. and Tanaka, K. (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant Physiol. 160, 1085-1091.   DOI   ScienceOn
28 Watanabe, K., Ryoji, O., Rasid, M. M., Suliman, A., Tohru, T., Hitoshi, K. and Yasutomo, T. (2004) Effects of 5-aminolevulinic acid to recover salt damage on cotton, tomato, and wheat seedlings in Saudi Arabia. J. Arid. Land. Stud. 14, 105-113.