• Title/Summary/Keyword: Salt resistance concrete

Search Result 100, Processing Time 0.02 seconds

A Study on the concrete pavement for early traffic opening day (콘크리트 도로포장의 조기개통에 관한 연구)

  • 임창덕;윤원곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.57-60
    • /
    • 1990
  • The purpose of this report is to study the traffic opening day of concrete pavement. For this purpose this paper studies on the propeties of various cement types which include the newly developed cement for the cement pavement regarding the resistance to the chemical attack caused by de-icing salt and the durability of the concrete pavement. Especially, traffic opening day of concrete pavement are discussed on site.

  • PDF

An Experimental Study on the Improvement of Early Strength and Chloride Attack Resistance for Marine Concrete (해양용콘크리트의 초기강도 및 내염해 저항성 향상에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Jong-Back;Bae, Jun-Young;Seo, Shin-Seok;Jo, Sung-Hyun;Roh, Hyeon-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.661-664
    • /
    • 2008
  • The structure which is located in special surroundings like ocean-environment is physically and chemically eroded by seawater or salt damage, and then concrete-structure becomes deteriorated by iron corrosion and swelling pressure which leads to remarkably decline durability due to cracks and exploitation. As a measure against salt damage, it is actively being examined to use the blended cement that controls salt damage and fix chloride in the process of hydration. In this study, therefore, to examine the property of marine concrete added admixture, marine concrete is manufactured by adding high-strength admixture(omega2000) by 0, 5, 10, and 15% to low heat-blended cement. Then it shows that the compressive strength of manufactured marine cement tends to increase and chloride penetration resistance improves.

  • PDF

A Study for Chemical Resistance of Polymer Cement Concrete Using Tailing (폐석 미분말을 혼입한 폴리머 시멘트 콘크리트의 내약품성에 관한 연구)

  • 전철수;연규석;이윤수;이필호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.355-360
    • /
    • 1999
  • Polymer cement is made by the modifying ordinary cement concrete with polymer additive. Until now polymer cement concrete is not used for the structural member, but it is growing to be considered as developing uses such as a waterproof of roof slab, the structural member for protecting corrosion, and a road pavement. The plymer cement concrete, being used for those uses, is superior to the cement concrete against the inorganic, organic acid, salt of acetic acid and organic solvents generally. In this paper, the polymer cement concrete was made by the ratio of 1:1 of sands and tailing in fine aggregate in order to solve the environmental pollution which causes the social problem by the tailing, It was measured for the compressive strength, flexural strength, and chemicals resistance was tested by dealing with 10% HCI, 20% NaOH and 10% NaCl aqueous solution.

  • PDF

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water (혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Yoo Jae-Kang;Kim Dong-Seuk;Park Sang-Joon;Won Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Mechanical properties and durability of roller-compacted concrete incorporating powdered and granulated blast furnace slag in frost regions

  • Morteza Madhkhan;Mohsen Shamsaddini;Amin Tanhadoust
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.467-480
    • /
    • 2024
  • The mechanical properties and durability of concrete pavements may be degraded in extreme situations, resulting in the need for partial repair or total replacement. During the past few decades, there has been a growing body of research on substituting a portion of Portland cement with alternative cementitious materials for improving concrete properties. In this study, two different configurations of powdered and granulated blast furnace slag were implemented, replacing fine aggregates (by 12 wt.%) and Portland cement (by 0, 20, 40, and 60 wt.%) in the making of roller-compacted concrete (RCC) mixes. The specimens were fabricated to investigate the mechanical properties and durability specifications, involving freeze-thaw, salt-scaling, and water absorption resistance. The experimental results indicated that the optimum mechanical properties of RCC mixes could be achieved when 20-40 wt.% of powdered slag was added to concrete mixes containing slag aggregates. Accordingly, the increases in compressive, tensile, and flexural strengths were 45, 50, and 28%, in comparison to the control specimen at the age of 90 days. Also, incorporating 60 wt.% of powdered slag gave rise to the optimum mix plan in terms of freeze-thaw resistance such that a negligible strength degradation was experienced after 300 cycles. In addition, the optimal moisture content of the proposed RCC mixtures was measured to be in the range of 5 to 6.56%. Furthermore, the partial addition of granulated slag was found to be more advantageous than using entirely natural sand in the improvement of the mechanical and durability characteristics of all mixture plans.

Evaluation on the Durability of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제 사용 고성능 콘크리트의 내구성 평가)

  • Koh Kyoung-Taek;Park Jung-Jun;Kang Su-Tae;Lee Jong-Suk;Kim Do-Gyeong;Kim Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.818-821
    • /
    • 2004
  • Generally, the high performance concrete of drying cracking and autogenous shrinkage are tend to be increased. In the previous study, it was found that the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separtely using method of that. This study is to investigated the durability of high performance concrete using expansive additive and shrinkage reducing agent. Test results showed that the high performance concrete using expansive additive and shrinkage reducing agent had very good not only the durability performance such as salt injury, carbonation, resistance to freezing-thawing and permeability but also the resistance to shrinkage.

  • PDF

Durability of Concrete Reinforced by Polypropylene Fivers (합성섬유보강 콘크리트의 내구특성)

  • 박제선;정영화;윤경구;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.449-454
    • /
    • 1999
  • Pavement concrete subjected to severe environmental condition may be vulnerable to frost attack practically where de-icing chemicals are used. This study focused on the investigation of durability characteristics of pavement concrete incorporation polypropylene fibers and application feasibility of these into the pavements of local roads and highway. A series of labortory tests were performed with main experimental variable such as fiber types, fiber contents. and type of concrete mix. The test of compressive strength was executed as primary tests, before the durability tests such as a scaling resistance were performed. De-icing salt resistance test was progressed by recycling freeze and thaw in the presence of a 4% calcium chloride solution. The deteriorated surfaces were rated by visual inspection and the loss weight were measured at every 5 cycles.

  • PDF

Corrosion Resistance of SD460 Reinforcing Rod by Ceramic Coating (SD460 철근의 세라믹 코팅에 의한 내식성 향상연구)

  • Park, Ki Y.;Lee, Jong K.;Hong, Seok W.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.157-161
    • /
    • 2009
  • The corrosion resistance of reinforcing bar was studied to endure the marine environment during shipment. The red rust on the surface did not damage the adherence in the concrete structures, especially in highly alkaline environment, but made the consumer doubt of the quality. The passivation process by alkalization of the quenching water in the tempcore process failed to endure the long shipping period. The ceramic coating by sol-gel process improved the corrosion resistance without damaging the mechanical properties and adherence between concrete and reinfiorcing bar. Optimal concentration of the coating solution and coating temperature were tested. No additional energy was necessary for the coating process by spraying during cooling process, resulting simplified process and low cost. Salt spray test, cyclic corrosion test and atmospheric test were employed to confirm the resistance. The corrosion rates were presented by rating number and polarization resistance. The coating layer was examined by FIB, XRD and SEM etc.

Effects of Cementitious Coating on Steel in Simulated Concrete Pore Solution

  • Wu, Xiao-Lin;Kim, Sang-Hyo;Ann, Ki-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.475-476
    • /
    • 2010
  • Hydration products formed on the steel surface may impose the resistance to corrosion of steel when a concrete is exposed to a salt environment. In the present study, ordinary Portland cement (OPC), calcium aluminate cement (CAC) and calcium hydroxide are applied as coating materials on the steel surface to consider the hydrations of each binder at corrosion. Corrosion is measured in terms of the corrosion potential and galvanic current to detect the effects in mitigating the corrosion behavior.

  • PDF