• Title/Summary/Keyword: Salt removal speed

Search Result 6, Processing Time 0.019 seconds

Salt Removal and Agricultural Application of Food Waste-Biochar (음식폐기물바이오차의 염분 제거 및 농업적 활용)

  • Sin-Sil Kim;Jun-Suk Rho;Jae-Hoon Lee;Ah-Young Choi;Seul-Rin Lee;Yu-Jin Park;Jong-Hwan Park;Young-Han Lee;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.159-167
    • /
    • 2023
  • Food waste (FW) emissions in South Korea amounted to 4.77 million tons in 2021, and continue to increase. Various technologies have been developed to treat FW, with recent research focusing on biochar production through pyrolysis to reduce FW. However, the agricultural application of food waste-biochar (FWBC) is limited by the salt accumulated during pyrolysis. This study investigated salt removal from and the kinetic characteristics of FWBC, and subsequently evaluated its agricultural applications. FW was pyrolyzed at 350℃ for 4 h, and subsequently washed for 0.1, 0.25, 0.5, 0.75, 1, 5, 15, and 30 min to remove salt. FWBC had a salt concentration of 5.75%, which was effectively removed through washing. The salt concentration decreased rapidly at the beginning (1 min) and then slowly decreased, unlike in FW, in which the salt decreased continuously and slowly. The salt removal speed constant (K) was 1.5586 (Stage 1, FWBC) > 0.0445 (Stage 2, FWBC) > 0.0026 (FW). In a lettuce cultivation experiment, higher biomass was achieved using washed FWBC than when using unwashed FWBC and FW, and soil properties were improved. Overall, these findings suggest that although FW reduction using pyrolysis causes a salt accumulation problem, the salt can be effectively removed through washing. The use of washed FWBC can enhance plant growth and soil properties.

Removal of Cl from the Incineration Ash of Domestic Municipal Solid Waste

  • Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.628-632
    • /
    • 2001
  • The removal rate of Cl from municipal solid waste incineration(MSWI) ash(bottom ash and fly ash) by washing was investigated. The Cl contents in the bottom ash and fly ash were 2.6-3.0% and 25-30% respectively, and KCl, NaCl, CaCIOH and friedel's salt were main components. From the results on the effects of washing time and temperature, the Cl contents in the bottom ash and fly ash were decreased up to 0.3% and 2.0% respectively by using of water as a solvent within 30 min at 2$0^{\circ}C$, 300 rpm of agitation speed and 10 of liquid/solid ratio. It is expected that the removal of Cl from the incineration ash by washing could make use of the ash for a cement raw material and so on.

  • PDF

Improvement of Seed Germination in a Spontaneous Autotetraploid of Poncirus and Chlorophyll Fluorescence of Seedlings in Salt Stress (동질 사배체 탱자의 종자 발아 증진과 염류 과잉에 따른 엽록소 형광 반응)

  • Chae, Chi Won;Yun, Su Hyun;Park, Jae Ho;Kim, Min Ju;Han, Seung Gab;Kang, Seok Beom;Koh, Sang Wook;Han, Sang Heon
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1079-1087
    • /
    • 2013
  • Speed germination success and robust vegetative growth of citrus rootstock through improved sowing methods and fertilizer inputs offer the usage of root system for the citrus. The current study evaluated the influence of seed coat removal and different fertilizer concentrations on plant germination and plant growth of spontaneous rootstock siblings. Decoated and coated seeds of diploid and tetraploid plants were sown in tubes. Commercial fertilizer concentrations of 0, 2, 4, 6, 8 and $10g{\cdot}l^{-1}$ were added. The experimental layout followed a randomized block $2{\times}6$ factorial design (seed coat removal ${\times}$ fertilizer concentration) for each rootstock. Fertilizer concentrations were 0, 10, 20 and $30g{\cdot}l^{-1}$ of the fertilizer for the resistance of the strength on the salt level. The germination rate of seeds without testa sown in vitro was improved (67-80%) compared to that of nontreated seeds. The eventual tree height of the seeds without testa in the diploid group was increased due to higher fertilization compared to that in the nontreated group. The removal of seed testa promoted the seed germination of both diploid and tetraploid trifoliate orange and resulted in greater height. Their vegetative development was also increased due to the increased fertilization of the rootstock. The Fv/Fm value for the diploid plants was 0.4 and 0.8 for the tetraploid ones under salt stress after 11 days of treatment. The removal of seed testa may improve the seed germination of trifoliate orange. Tetraploid trifoliate orange appears to possess resistance to salt stress compared to the diploid variety.

Removal of Chlorine from Fly Ash in Municipal Solid Waste Incineration Ash by Water Washing (수세에 의한 생활폐기물 소각재 중 비산재로부터 염소성분의 제거)

  • 안지환;한기천;김형석
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.36-43
    • /
    • 2001
  • The chlorine component in fly ash from municipal solid waste incineration ash was removed by water washing for the purpose of recycling fly ash as a raw material of ordinary portland cement. The samples were a different kind of 리y ashes using $Ca(OH)_2$and NaOH as media of wet scrubber for flue gas cleaning. The content of soluble salts of fly ash using $Ca(OH)_2$and NaOH was 32.8%, 50.1% and the content of chlorine component, 22.9% and 26.0% respectively, which was KCl, NaCl, CaC1OH mainly. When each fly ash was washed using water under conditions of a agitation speed of 300 rpm, a liquid to solid ratio of 10, most soluble salts in fly ash were dissolved within 30 minutes and the content of chlorine component in ash was diminished to the content of 4.4%, 2.O% at $20^{\circ}C$ and 1.7%, 0.8% at $50^{\circ}C$ respectively. And the main compound of residual chlorine component in ash after water washing was friedel`s salt ($3CaO.A1_2$$O_3$.$CaCl_2$.$10H2$O). From analysis results of water quality for wastewater by water washing, the components exceeding discharged wastewater standard were only Pb and Cd. But As pH was controlled to 10 with addition of $CO_2$(g) or $Na_2$$_CO3$in water, the concentration of heavy metals such as Pb and Cd was also under discharged wastewater standard.

  • PDF

Characteristics of Sapphire Wafers Polishing Depending on Ion Conductivity of Silica Sol (실리카졸의 이온전도도 변화에 따른 사파이어 웨이퍼의 연마 특성)

  • Na, Ho Seong;Cho, Gyeong Sook;Lee, Dong-Hyun;Park, Min-Gyeong;Kim, Dae Sung;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • CMP(Chemical Mechanical Polishing) Processes have been used to improve the planarization of the wafers in the semiconductor manufacturing industry. Polishing performance of CMP Process is determined by the chemical reaction of the liquid sol containing abrasive, pressure of the head portion and rotational speed of the polishing pad. However, frictional heat generated during the CMP process causes agglomeration of the particles and the liquidity degradation, resulting in a non-uniform of surface roughness and surface scratch. To overcome this chronic problem, herein, we introduced NaCl salt as an additive into silica sol for elimination the generation of frictional heat. The added NaCl reduced the zata potential of silica sol and increased the contact surface of silica particles onto the sapphire wafer, resulting in increase of the removal rate up to 17 %. Additionally, it seems that the silica particles adsorbed on the polishing pad decreased the contact area between the sapphire water and polishing pad, which suppressed the generation of frictional heat.

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.