• 제목/요약/키워드: Salt adsorption capacity

검색결과 29건 처리시간 0.025초

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman;Ali, Sahar;Abdalla, Heba;Saied, Marwa
    • Membrane and Water Treatment
    • /
    • 제7권1호
    • /
    • pp.55-70
    • /
    • 2016
  • Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

Chitosan 및 Chitosan유도체를 이용한 중금속 이온 흡착에 관한 연구 (A Study on Adsorption of Heavy Metal Ions Using Chitosan and Chitosan Derivative)

  • 이광일;곽천근;장병만;김영주;박태홍;노승일;이기창
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.25-34
    • /
    • 1996
  • We have synthesized the water-insoluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of chitosan with carbon disulfide in the presence of alkali metal hydroxide, Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. To elucidate this natural polymer the capacity of adsorbing heavy metal ions, we have performed adsorption experiments using chitosan derivatives of various average molecular weights with different contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from chitosan of average molecular weight ranging $5,700{\sim}20,000$ was shown to have the highest capacity of adsorbing heavy metal ions. Adsorbing efficiency was increased as the reaction time was increased and as the reaction temperature range of $25{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, appeared to vary depending on the heavy metal ions studied.

킬레이트 흡착제(2,2'-Iminodibenzoic acid-가교 chitosan)의 합성과 Pb(II), Cu(II), Cd(II)의 흡착력에 관한 연구 (Synthesis of Chelating Adsorbent (2,2'-Iminodibenzoic Acid-crosslinked Chitosan) and Adsorptivity of Pb(II), Cu(II), Cd(II))

  • 심상균;류재준
    • 분석과학
    • /
    • 제11권6호
    • /
    • pp.452-459
    • /
    • 1998
  • 수산계 폐기물로부터 분리한 chitin을 epichlorohydrin과 반응시켜 가교 chitin을 제조한 후 탈아세틸화하여 가교 chitosan을 제조하였다. 가교 chitosan-OH를 가교 chitosan-Cl로 전환시킨 뒤 킬레이트 시약인 2,2'-Iminodibenzoic acid 염과 반응시켜 킬레이트 흡착제인 2,2'-Iminodibenzoic acid-가교 chitosan을 합성하였다. 그리고 합성된 흡착제를 이용하여 Pb(II), Cu(II), Cd(II)의 흡착과 회수 특성을 연구하였다. 흡착특성에 대한 실험 결과, pH가 증가할수록 흡착되는 금속 이온의 양이 증가함을 알 수 있었다. 최적 반응시간은 1시간, 흡착력은 Cu(II)

  • PDF

Separation of Nattokinase from Bacillus subtilis Fermentation Broth by Expanded Bed Adsorption with Mixed-mode Adsorbent

  • Lu Miao-Hua;Lin Dong-Qiang;Wu Yuan-Chun;Yun Jun-Xian;Mei Le-He;Yao Shan-Jing
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.128-135
    • /
    • 2005
  • Mixed-mode hydrophobic/ionic matrices exhibit a salt-tolerant property for adsorbing target protein from high-ionic strength feedstock, which allows the application of undiluted feedstock via an expanded bed process. In the present work, a new type of mixed-mode adsorbent designed for expanded bed adsorption, Fastline $PRO^{\circledR}$, was challenged for the capture of nattokinase from the high ionic fermentation broth of Bacillus subtilis. Two important factors, pH and ion concentration, were investigated with regard to the performance of nattokinase ad-sorption. Under initial fermentation broth conditions (pH 6.6 and conductivity of 10 mS/cm) the adsorption capacity of nattokinase with Fastline PRO was high, with a maximum capacity of 5,350 U/mL adsorbent. The elution behaviors were investigated using packed bed adsorption experiments, which demonstrated that the effective desorption of nattokinase could be achieved by effecting a pH of 9.5. The biomass pulse response experiments were carried out in order to evaluate the biomass/adsorbent interactions between Bacillus subtilis cells and Fastline PRO, and to demonstrate a stable expanded bed in the feedstock containing Bacillus subtilis cells. Finally, an EBA process, utilizing mixed-mode Fastline PRO adsorbent, was optimized to capture nattokinase directly from the fermentation broth. The purification factor reached 12.3, thereby demonstrating the advantages of the mixed-mode EBA in enzyme separation.

Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation

  • Gao, Jiefeng;Li, Bei;Wang, Ling;Huang, Xuewu;Xue, Huaiguo
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.416-424
    • /
    • 2018
  • Oil spill and oily wastewater have now become a serious threat to the freshwater and marine environments. Porous materials with super-hydrophobicity and super-oleophilicity are good candidates for the oil adsorption and oil/water separation. Here, flexible hybrid nanofibrous membrane (FHNM) containing $SiO_2$/polyvinylidene fluoride (PVDF) microspheres was prepared by simultaneous electrospinning and electrospraying. The obtained FHNM combined the flexibility of the nanofiber mat and super-hydrophobicity of the microspheres, which could not be achieved by either only electrospinning or only electrospraying. It was found that when the weight ratio between the $SiO_2$ and PVDF reached a critical value, the $SiO_2$ nanoparticles were present on the PVDF microsphere surface, significantly improving the surface roughness and hence the contact angle of the FHNM. Compared with the pure electrospun PVDF nanofiber mat, most of the FHNMs have a higher oil adsorption capacity. The FHNM could separate the oil with water quickly under the gravity and displayed a high efficiency and good reusability for the oil/water separation. More importantly, the FHNM could not only separate the oil with the pure water but also the corrosive solution including the salt, acid and alkali solution.

지하수로부터 붕소이온 분리를 위한 아민화 PP-g-styrene 이온교환체 섬유의 합성과 붕소 음이온 흡착에 관한 연구 (Synthesis of Aminated PP-g-styrene Fibrous Ion-Exchanger for Separation of Boron from Ground-Water)

  • 황택성;이진혁;이면주
    • 폴리머
    • /
    • 제25권4호
    • /
    • pp.451-459
    • /
    • 2001
  • 스티렌 단량체를 E-beam 전조사법에 의해 폴리프로필렌 섬유에 그라프트 반응시켜 PP-g-styrene 공중합체를 제조한 후 클로로메틸화 반응과 아민화 반응을 통하여 아민형 이온교환수지를 합성하였다. 공중합체의 그라프트율은 스티렌 단량체의 농도가 증가할수록 증가하였으며, 스티렌 단량체의 농도가 80% 일때 118%로 최대치를 나타내었다. Mohr's salt와 황산의 최적 농도는 1.0 ${\times}\;10^{-3}$ M 과 0.1M 로 나타났다. 아민화율은 그라프트율이 증가할수록 증가하였다. 합성한 아민형 이온교환체의 팽윤율은 기재보다 높게 나타났으며 이온교환용량은 6.7 meq/g으로 상용 이온교환수지에 비하여 3배 정도의 수치를 나타내었다. 붕소이온흡착의 최적 조건은 pH 4에서 나타났으며, 붕소이온 흡착량은 아민화율이 증가할수록 증가하였다.

  • PDF

CDI 공정에서 Alginic Acid Sodium Salt의 파울링 현상 확인 및 제거 조건 확립 (Identification of Fouling Phenomena and Establishment for Optimized Removal Process of Alginic Acid Sodium Salt Through Capacitive Deionization)

  • 이진연;임지원
    • 멤브레인
    • /
    • 제30권5호
    • /
    • pp.342-349
    • /
    • 2020
  • 본 연구에서는 자연수, 하폐수에 많이 포함되어 있는 파울링 유발 물질 중 하나인 alginic acid sodium salt를 축전식 탈염공정(capacity deionization, CDI)에서 파울링 감소를 위한 조건을 확립하고자 한다. 먼저 feed 물질로 NaCl을 사용하였다. 이는 파울링 발생에 대한 비교 물질로, 파울링이 발생하지 않음을 관찰하였다. Alginic acid sodium salt를 사용하여 파울링 발생 여부를 확인하였다. 농도는 7 mg/L, 흡착 1.2 V 5 min, 탈착 -2 V 1 min에서 효율이 50.07%으로 제일 효율적인 탈착 조건임을 알 수 있었다.

염을 혼합한 국산 Bentonite의 흡착능에 관하여 (Study on the Adsorptivity of Korean Bentonite Premixed with Salts)

  • 김면섭
    • 대한화학회지
    • /
    • 제17권1호
    • /
    • pp.53-59
    • /
    • 1973
  • 우리나라 영산일 bentonite를 KF, $NH_{4}Cl$등의 염과 혼합하여 $200-500^{\circ}C$로 가열처리하여 수세 건조한 시료의 methylene blue 흡착능을 조사하였다. $NH_{4}Cl$를 혼합하여 처리하였을 경우에는 methylene blue 흡착능이 다소 개선되었다. KF를 혼합하여 처리하였을 경우에는$200-300^{\circ}C$의 처리에서 methylene blue의 흡착능이 원시료의 약1.7배까지 개선되었다. $FeSO_4$$Na_{2}CO_4$등의 염과 혼합하여 처리하였을 경우에는 오히려 methylene blue 흡착능이 감소되었다.

  • PDF

Humic Acid Removal from Water by Iron-coated Sand: A Column Experiment

  • Kim, Hyon-Chong;Park, Seong-Jik;Lee, Chang-Gu;Han, Yong-Un;Park, Jeong-Ann;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제14권1호
    • /
    • pp.41-47
    • /
    • 2009
  • Column experiments were performed in this study to investigate humic acid adhesion to iron oxide-coated sand (ICS) under different experimental conditions including influent humic acid concentration, flow rate, solution pH, and ionic strength/composition. Breakthrough curves of humic acid were obtained by monitoring effluents, and then column capacity for humic acid adsorption ($C_cap$), total adsorption percent (R), and mass of humic acid adsorbed per unit mass of filter media ($q_a$) were quantified from these curves. Results showed that humic acid adhesion was about seven times higher in ICS than in quartz sand at given experimental conditions. This indicates that humic acid removal can be enhanced through the surface charge modification of quartz sand with iron oxide coating. The adhesion of humic acid in ICS was influenced by influent humic acid concentration. $C_cap$ and $q_a$ increased while R decreased with increasing influent humic acid concentration in ICS column. However, the influence of flow rate was not eminent in our experimental conditions. The humic acid adhesion was enhanced with increasing salt concentration of solution. $C_cap$, $q_a$ and R increased in ICS column with increasing salt concentration. On the adhesion of humic acid, the impact of CaCl2 was greater than that of NaCl. Also, the humic acid adhesion to ICS decreased with increasing solution pH. $C_cap$, $q_a$ and R decreased with increasing solution pH. This study demonstrates that humic acid concentration, salt concentration/composition, and solution pH should be controlled carefully in order to improve the ICS column performance for humic acid removal from water.

막 축전식 탈염 공정의 다단 적층 모듈을 통한 처리 용량 증대 및 이의 성능 연구 (Studies of Performance and Enlarged Capacity through Multi-stages Stacked Module in Membrane Capacitive Deionization Process)

  • 송예진;윤원섭;임지원
    • 멤브레인
    • /
    • 제27권5호
    • /
    • pp.449-457
    • /
    • 2017
  • 본 연구에서는 막 결합형 축전식 탈염공정의 단위셀의 단수를 늘려 적층된 10단 형태의 모듈을 설계하여 제작하였다. 아민기가 함유된 폴리설폰(APSf)과 술폰기가 함유된 폴리이서이서케톤(SPEEK)을 합성하였으며 캐스팅법으로 다공성 탄소전극에 코팅하여 제조하였다. 10단 모듈에 대하여 흡착전압 및 시간, 탈착전압 및 시간, 공급액의 유속과 농도 등의 운전 조건과 $CaSO_4$, $MgCl_2$ 등의 2가 이온 용액과 수도수에 대하여 염 제거효율을 측정하였다. 대표적으로 NaCl 100 mg/L의 공급액을 사용하였을 때, 유속 100 mL/min, 흡착조건 1.2 V/3 min, 탈착조건 -0.5 V/5 min에서 98.3%의 염 제거효율을 보였다.