• Title/Summary/Keyword: Salt Spray Environment

Search Result 37, Processing Time 0.024 seconds

Durability of Various Anti-Corrosive Organic Coatings in Marine Environment for Twelve Years

  • Yamamoto, Mashiro;Kajiki, Toshitaka;Kamon, Toshikuni;Yoshida, Kotaro
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • In order to clarify the durability of protective coatings for maritime steel structures, various anti-corrosive organic coated steel samples were exposed for twelve years in semitropical marine environment at Miyakojima Island, Okinawa, JAPAN. Samples were various organic coated steel pipes, 4.0 m in length and 150 mm in diameter. While the bare steel pipe entirely corroded in 4.5 mm thickness in four and half years, these organic coated steel pipes exhibited protective appearances after twelve-year-exposure except for the defect in the coatings. Polyethylene (PE) lining pipe exhibited a good protective performance. Urethane painted pipe was also good but some barnacles stuck to its surface. A combination of petrolatum tape and FRP cover showed sufficient corrosion resistance for steel surface. The correlation in results between exposure and laboratory acceleration test was examined. It was found that salt spray test (SST) results corresponded to rusted area of scratched portion and that adhesion change of coating layer corresponded to the rotating immersion test result. Among the on-site measured data, volume resistivity is utilized for the index of corrosion protection performance of organic coating.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

Characteristics of Polyaniline Anti-Corrosive Coatings with Primer and Top Coating Resins (하도 및 상도 수지에 따른 폴리아닐린 방청도료의 특성)

  • Kim, Tae-Ok;Kong, Seung-Dae;Park, Jin-U
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.399-409
    • /
    • 2007
  • Characteristics of polyaniline anti-corrosive coatings with various primer coating resins(epoxy resin, urethane resin, and others) and top coating resins(epoxy and acrylic urethane resins) were investigated through adhesion, acid resistance, alkaline resistance, water resistance, and anti-corrosion tests. As a result, the anti-corrosive properties of the prepared coatings using polyaniline varied with the types of primer and top coating resins. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using emeraldine base (EB) of polyaniline blended with single-packaged urethane and acrylic urethane resins as the primer coatings, and using acrylic urethane resin as the top coatings. Also, the anti-corrosive function of these anti-corrosive coatings was well preserved for 1000 hr in the salt spray experiment.

Corrosion Resistance Characteristics of Cr-free Coating Solution for Degraded STS316L (열화한 STS316L에 대한 Cr-free 코팅액의 내식특성)

  • Lee, So-Young;Kim, Young-Soo;Jeong, Hee-Rock;Ahn, Seok-hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.475-480
    • /
    • 2015
  • In this study, we developed a Cr-free organic/inorganic hybrid solution and investigated its coating properties on degraded STS316L. Both the OIBD-1 solution and OIBD-2 solution had excellent corrosion resistance and adhesion ability. However, the solution had some problems in a boiling water environment. In addition, the flexibility was excellent, and the scratch resistance was relatively good.

Methodological approach of evaluation on prefabrication primers for steel structures

  • Chung, Sung-Wook;Hyun, Jeong-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.707-717
    • /
    • 2021
  • To the date, shipbuilding companies have applied shop primer coating which protects the steel surface from global oxidization in environment. Proper shop primer requires either anti-corrosion ability during construction or anti-porosity ability during welding, and those properties contradict to each other. This report tried to derive an optimizing parameter on these conflicting properties to select a proper shop primer. First, sufficient amounts of the natural salt spray tests were carried out to achieve a series of data for the anti-corrosion ability. Second, lots of T-joint fillet welding test were performed to evaluate the trapped porosity formed in the weld pool. According to the experimental data, we could achieve either the rust-formation rate or the porosity-formation rate, then, each rate was generalized as formulae. Then, we tried to combine these conflicting properties to decide an optimum shop primer.

Evaluation of the Corrosion Resistance of Zn-Coated Steel as a Function of the Temperature of the Cr-free Solution Used to Coat the Steel (Cr-free 코팅액에 의한 아연도금강판의 열처리 온도에 따른 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.60-66
    • /
    • 2010
  • Zinc has a number of characteristics that make it well suited for use as a coating to protecting iron and steel products from corrosion. Its excellent corrosion resistance in most environments accounts for its successful use as a protective coating on a variety of products and in many exposure conditions. The excellent field performance of zinc coatings results from their ability to form dense, adherent films that corrode at a rate that ranges from 1% to 10% of the corrosion rate of ferrous materials, depending on the environment. Recently, EU RoHS and EU ELV prohibited the use of materials that adversely affect the environment, such as Pb, Hg, Cd, and $Cr^{+6}$. In this study, environmentally-friendly, Cr-free solutions (epoxy solution, acrylic solution, and urethane solution S-700) and organic/inorganic solution with Si; LRO-317) were used to evaluate the corrosion resistance of zinc-coated steel subjected to a saltwater spray for 72 hours. The coating of urethane solution (S-700) was best among the three kinds of solution with heat treatment during five minutes at $190^{\circ}F$. Test specimens with S-700 and LRO-317 coating were heat treated in a drying oven at 170, 180, 190, 200, and $210^{\circ}C$ for five minutes. The results show that the optimum corrosion resistance was $190^{\circ}C$ in EGI and $170^{\circ}C$ in HDGI, respectively.

The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water (염화물이 함유된 동결수의 동결융해 작용에 따른 콘크리트의 내동해성과 표면열화 평가)

  • Kim, Gyu-Yong;Kim, Moo-Han;Cho, Bong-Suk;Lee, Seung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.143-151
    • /
    • 2007
  • This study presents the experimental results of frost durability including resistance to freezing-thawing and surface scaling of concrete. Mixing design was proportioned with the various water-binder ratio between 0.37 and 0.47 and three different binder compositions corresponding to Type I cement without any supplementary cementitious materials(OPC), Type II cement with 50% blast-furnace slag replacement(BFS50), and ternary cement with Type III cement, 15% fly ash, and 35% slag replacement (BFS35%+FA15%). Test results showed that the mixing design with BFS50% and BFS35%+FA15% exhibited higher durability factor than that made with OPC only. Finally, the use of blend cement containing slag can be used effectively in terms of frost durability of the concrete exposed to severe condition under coastal environment like as flying salt, sea water spray, etc.

Study on Atmospheric Corrosion for Two Different Marine Environments in India

  • Saha, Jayanta Kumar
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • In any developing nation major investment goes for infrastructure and it is not exception in India. Good numbers of buildings, bridges, shopping malls, car parks etc. are coming up with steel for sustainable development. Thus protecting the structures from corrosion are the challenges faced by professionals for all types of steel structures. About 3% of GDP is accounted for loss due to corrosion. To combat this up to date corrosion map is called for as the country has wide variation of climatic zones with vastcoastline. Logically organic paint system can be prescribed based on the corrosion rate on bare steel with respect to environment. Present paper will emphasis on the study conducted on two types of structural steel coated with organic paint located in twomarine environment having been exposed for three years, Test coupons made from steels both bare and coated are deployed at two field stations having marine (Digha) and industrial marine (Channai) environments. Various tests like AC impedance DC corrosion, polarisation, salt spray test, $SO_2$ chamber and Raman spectroscopy were carried out both in laboratory on fresh as well as coupons collected from exposure sites. Rust formed on the bare and scribed coated coupons are investigated. It is found that normal marine environment at Digha exhibits higher corrosion rate than polluted marine environment in Channai. Rust analysis indicates formation of ${\propto}$-FeoOH protects or reduces corrosion rate at Channai and formation of non-protective ${\gamma}$-FeoOH increases corrosion rate at Digha. The slower corrosion rate in Channai than at Digha is attributed due to availability of $SO_2$, in the environment, which converts non‐protective rust ${\gamma}$-FeoOH to protective rust ${\propto}$-FeoOH. While comparing the damage on the coated panels it is found that low alloy structural steel provides less damage than plain carbon steel. From the experimentations a suitable paint system specification is drawn for identical environments for low medium and high durability.

Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings (강 구조물에 대한 폴리아닐린 함유도료의 방청특성)

  • Song, Min-Kyung;Kong, Seung-Dae;Oh, Eun-Ha;Yoon, Hun-Cheol;Kim, Yoon-Shin;Im, Ho-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

Corrosion Resistance of Cr-bearing Rebar to Macrocell Corrosion Caused by Concrete with Crack (피복 콘크리트의 균열 발생에 기인한 매크로셀 부식 환경하에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • This study was investigated to corrosion resistance of Cr-bearing rebars to macrocell corrosion caused by concrete with crack. Ten types of steel bars having different Cr contents were embedded in concretes with imitation crack. The corrosion resistance of the Cr-bearing rebar was examined by measuring half-cell potential, macrocell corrosion current, corrosion area and weight loss up to 105 cycles of salt spray testing. The results revealed that the Cr content required for corrosion resistance in a macrocell corrosion environment caused by chloride ion gap of $3kg/m^3$ was 9% or more. The corrosion-resisting performance of Cr-bearing rebar was particularly noticeable with a Cr content of 11% or more.