• Title/Summary/Keyword: Salinity-temperature effect

Search Result 208, Processing Time 0.026 seconds

Effect of Dietary Essential Oils on Growth, Feed Utilization and Meat Yields of White Leg Shrimp L. vannamei

  • Kim, J.D.;Nhut, T.M.;Hai, T.N.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1136-1141
    • /
    • 2011
  • Effect of dietary essential oils on growth, feed utilization and meat yields of white leg shrimp L. vannamei was investigated. White shrimp fry weighing 0.62 g were kept in one of 12 tanks (75 head/500 L holding tank) in a closed recirculation system. Four experimental diets, a commercial diet (control), phytoncide oil (PO), oregano oil (OO) and fermented garlic liquid (GL) were fed for 16 weeks. The mean water quality values for the whole experimental period were $27.8{\pm}1^{\circ}C$, $7.6{\pm}0.3$, $15.5{\pm}0.3$ g/L and $6.1{\pm}0.3$ mg/L for water temperature, pH, salinity and dissolved oxygen, respectively. At the end of the trial, 10 shrimp per tank were randomly sampled and meat yields (%) were evaluated after peeling the shell and removing the head. After a 16 week feeding trial, final weight of shrimp ranged from 21.9 g to 23.6 g. Feed conversion was not significantly different among groups (p>0.05), which was the lowest (1.95) in the control and highest (2.30) in the PO. Specific growth rate was also not significantly different (p>0.05) and ranged from 3.18% to 3.25%. Average daily gain of 0.2 g was obtained in all treatments. Mortality varied from 35.1% for control to 44.9% for OO. Meat yields maintained constant at 52.1% for control to 53.0% for PO. The study suggested that natural essential oils could not exert any improvement in growth performance, mortality and meat yields of white leg shrimp.

Effect of light intensity on first feeding of the chub mackerel Scomber japonicus larvae

  • Yoon, Ho-Seop;Hwang, Jae-Ho;Choi, Sang-Duk
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.125-128
    • /
    • 2010
  • This study investigated the effect of different light intensities on first feeding of chub mackerel Scomber japonicus larvae. Fertilized eggs, obtained from LHRHa-induced spawning of captive broodstock, were stocked (60 larvae/l) into twelve 30-1 aquaria under light intensities of 0, 100, 200, 500 and 1000 lx, with three replicate aquaria per treatment. Temperature was maintained at $20^{\circ}C$ and salinity was 35 psu. Larvae were fed the rotifer Brachionus rotundiformis at a density of five rotifers/ml. Feeding incidence was measured as the percentage of larvae with prey in the digestive tract. Feeding intensity was evaluated as the number of prey in the digestive tract of the larvae. Larvae fed in darkness (0 lx) had significantly lower (P < 0.05) feeding incidence ($13{\pm}0.05%$ larvae with prey) and feeding intensity ($1.00{\pm}0.05$ rotifers per larva) than those larvae fed at 100 ($30{\pm}0.07%$, $1.17{\pm}0.09$ rotifers per larva), 200 ($43{\pm}0.08%$, $1.24{\pm}0.11$ rotifers larvae$^{-1}$), 500 ($53{\pm}0.08%$, $1.48{\pm}0.14$ rotifers per larva) and 1000 lx ($60{\pm}0.08%$, $1.38{\pm}0.13$ rotifers per larva). The feeding incidence of S. japonicus larvae increased with light intensity while feeding intensity showed no significant difference (P > 0.05) between light treatments.

Studies on the Natural Mortality of the Young Short Necked Clam, Tapes japonica-I. Seaonal Variation of the tidal Temperature, Sainity , and the Effect of Overflowing Fresh Water on the Subterranean Salinity of the Tidal Flat at Low Tide (바지락 치패의 폐사에 관한 연구-I 간척지의 간출시에 있어서의 온도, 염분변화와 유입하천수의 지하염분에 미치는 영향)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1966
  • Frequently , large masses of the young short necked clam, Tapes japonica , die at their tidal flats in summer and this phenomenon has not been explained clearly. The purpose of the present investigation is to study the thermal condition and the chlorinity level of tidal flats in which the young clam appears to be injured. A study is also mad efor the burrowing organism in the lower layer of the esturay over which the fresh water flow during the low tide. Observation are made at five places of the tidal flat near Ikawazu Fixheries Laboratory of Tokyo University during the ebb and flow tide period of the spring tide. The diurnal and monthly changes of tidal temperatures and chlorinities are measured. Results of the study are ; 1. The surface temperature of the tidal flat increases with the ebb tide, reaches the highest between 12-14PM, and gradually decreases thereafter. The temperatures of tidal flat below 5 and 10 cm increase gradually until the flow tide reaches the surface. 2. At the spring tide in summer , the diurnal change of surface of the tidal flat temperature is very extensive ; it reaches 37-39$^{\circ}C$ in August. At the depths of 5 and 10 cm the temperature remains at 33 $^{\circ}C$ and 31$^{\circ}C$ , respectively. 3. The chlorinity of the tidal flat is higher during May through June and lower July through August, and this seems to be related to the amount of rainfall. 4. The chlorinity of the surface of tidal flat increases slightly during the ebb and flow tide periods. The observed higher chlorinity of surface of the tidal flat was 18.82% Cl. 5. At near the esturay, the fresh water that overflows the tidal flat affects the chlorinity of the surface but no such influence to the depth of the flat. 6. From above observations, it is assumed that the young short necked clam in the tidal flat could be exposed to the severe change of environmental conditions. The high temperature of the tidal flat in summer and the low chlorinity of it at flood period may be considered as the change in environment.

  • PDF

Applications of Thermal Imaging Camera to Detect the Physiological States Caused by Soil Fertilizer, Shading Growth, and Genetic Characteristic (열화상 카메라 활용을 위한 토양비료, 차광생육, 유전특성 차이 관련 작물생리 원격탐지)

  • Moon, Hyun-Dong;Cho, Yuna;Jo, Euni;Kim, Hyunki;Kim, Bo-kyeong;Jeong, Hoejeong;Kwon, Dongwon;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1101-1107
    • /
    • 2022
  • The leaf temperature is principally regulated by the opening and closing of stomata that is sensitive to various kinds of plant physiological stress. Thus, the analysis of thermal imagery, one of remote sensing technique, will be useful to detect crop physiological condition on smart farm system and phenomics platform. However, there are few case studies using a thermal imaging camera on the agricultural application. In this study, three cases are presented: the effect of lime fertilizer on the rice, the different physiological properties of soybean under shading condition, and the screening of soybean breeds for salinity tolerance characteristic. The leaf temperature measured by thermal imaging camera on the three cases was used effectively to the physiological change and characteristics. However, the thermal imagery analysis requires considering the accuracy of measured temperature and the weather conditions that affects to the leaf temperature.

Relationship between Environmental Characteristics and Pigment Composition and Concentrations of Porphyra yezoensis Ueda in the Southwestern Coast of the Korean Peninsula (남서해역에서 양식되는 방사무늬김(Porphyra yezoensis Ueda)의 색소조성과 농도에 영향을 미치는 해양환경 특성)

  • Kim, Jeong Bae;Lee, Won-Chan;Hong, Sokjin;Shim, Jeong Hee;Park, Jung-Im;Park, Jihye;Lee, Eu Gene
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.200-209
    • /
    • 2012
  • The effect of water temperature, salinity and water column nutrient contents on pigment composition and concentration of purple lavers were studied at the main purple lavers production areas in Southwestern coast of Korea, during January to March, 2011. Water temperature was between 3.0 and $11.3^{\circ}C$. Salinity range was between 32.7 and 34.7, those were lower St. 1 and St. 6, which were at close to the seashore. Water column dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and silicate concentrations were $1.73{\sim}12.84{\mu}M$, $0.07{\sim}0.67{\mu}M$ and $4.93{\sim}18.29{\mu}M$, respectively. Chl a concentration was between 0.41 and $9.14{\mu}g\;L^{-1}$, and it was the highest at St. 1 during January. Photosynthetic pigment of fucoxanthin was dominant at all sites, which showed its highest concentration ($0.06{\sim}3.41{\mu}g\;L^{-1}$) at St. 1 on January. Water column DIN concentration was higher at January during low salinity period at all sites, but it was low at St. 1. Photosynthetic pigment of Chl a, PE and PC concentration of porphyra blades was between $1,173{\sim}8,124{\mu}g\;DW\;g^{-1}$, $3,281{\sim}10,076{\mu}g\;DW\;g^{-1}$, $388{\sim}1,346{\mu}g\;DW\;g^{-1}$, respectively. The concentration was relatively high at the St. 2 and St. 3. The pigment concentration of porphyra blades was higher at only Porphyra yezoensis was cultured than at Porphyra yezoensis and Porphyra seriata were cultured. The pigment concentration of porphyra blades was higher at St. 2 and St. 3 in only Porphyra yezoensis was cultured. This study shows that pigment concentration of porphyra blades may depend on habitat environment and culture methods.

Removal Efficiency of Pollutants in Agricultural Wastewater by Constructed Wetlands on Reclaimed Land in the Goheung Bay (고흥만 간척지 내 인공습지에 의한 농경배수 정화효율에 관한 연구)

  • Yu, Hun-Sun;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.37-47
    • /
    • 2009
  • This research was conducted at the constructed wetland in Goheung reclaimed land, and water quality components were measured at the 12 points in 15 March 2008 and 10 January 2009, respectively. Temperature, pH, DO, EC and salinity components were measured at the field, and TOC, Cl-, COD, TSS, T-P and TN components were analyzed laboratory. Concentrations of field measured components at inflow points were higher than in constructed wetland. TOC concentration ratio of inflow water to constructed wetland water was higher in January, and Cl concentration ratio of it was higher in March. And, COD concentration ratio of it were 1.37 for March and 1.49 for January, respectively. T-P and T-N concentration ratios of it at inflow points were higher 3 times than in constructed wetland. Constructed wetland attenuated concentration of contaminated components inflow to it. Removal efficiencies of Cl-, T-P and T-N components in inflow water were high at the constructed wetland. removal efficiencies of Cl component were 83% for 1st monitoring and 76% for 2nd monitoring, this removal efficiency be caused by dilution effect of constructed wetland. removal efficiencies of T-P component were 67% for 1st monitoring and 69% for 2nd monitoring, and they of T-N component were 100% for 1st monitoring and 95% for 2nd monitoring. Abnormal removal efficiency of T-N component is caused that nitrogen in inflow water was a little. Removal efficiency of T-P component was higher in January, and T-N component was higher in March. This is caused by environmental difference between growing season and winter.

  • PDF

Effects of Alaska Pollack Addition on the Quality of Kimchi (Korean salted cabbage) (명태를 첨가한 김치의 품질특성)

  • Sung, Jung-Min;Choi, Hae-Yeon
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.772-781
    • /
    • 2009
  • We investigated the effects of Alaska pollack addition on the quality of Kimchi during 20 days of fermentation at 10C. Alaska pollack was added to salted cabbage at concentrations of 0%, 6%, 12%, or 18% (all w/w). The quality characteristics determined were pH, acidity, salinity, reducing sugar content, color, free amino acid level, and lactic acid bacterial counts, at 4 d intervals over 20 d, during progressive fermentation at constant temperature (10C). Changes in pH, acidity, and reducing sugar content during fermentation were increased when Alaska pollack was added, whereas salinity decreased. Total lactic acid bacterial counts achieved maximum levels on day 8 for Kimchi with 18% (w/w) Alaska pollack, and the other Kimchi samples attained their highest values on day 12. In terms of color, the L, a, and b values of Kimchi rose with addition of Alaska pollack. The free amino acid content of Kimchi increased as the level of added Alaska pollack rose but gradually fell as fermentation progressed. Upon sensory evaluation, Kimchi with 6% (w/w) Alaska pollack scored highest in terms of appearance, texture, taste, and overall acceptance. In conclusion, our results indicate that Alaska pollack has a positive effect on the quality of Kimchi, increasing the content of free amino acids.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

Temporal Variations of Sea Water Environment and Nutrients in the East Coast of Korea in 2013~2017: Sokcho, Jukbyeon and Gampo Coastal Areas (2013~2017년 동해 연안의 해양환경과 영양염의 시간적 변동 : 속초, 죽변, 감포 연안)

  • Kwon, Kee-Young;Shim, Jeong Hee;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.457-467
    • /
    • 2019
  • To investigate the long-term variation characteristics of nutrients in the east coast of Korea, water temperature, salinity, dissolved oxygen, and nutrients were measured at three stations of Sokcho, Jukbyeon and Gampo coasts for five years from 2013 to 2017. For five years, the water temperature of the East Sea coast was in the range of $1.2{\sim}28.8^{\circ}C$, the salinity was in the range of 30.63~34.79 and the dissolved oxygen (DO) was in the range of 3.53~7.64 mL/L. Distribution and variation of the water environment factors in the study area were determined by the vertical stratification of water column and distribution of water temperature. The high DO concentration in Sokcho coast From 2015 to August 2016 is presumed to be the result of the southward inflow of North Korean Cold Water (NKCW). Concentrations of dissolved inorganic nitrogen (DIN, $NH_4-N+NO_2-N+NO_3-N$) ranged $0.11{\sim}24.19{\mu}M$, phosphate concentration ranged $0.01{\sim}1.75{\mu}M$, and silicate ranged $0.17{\sim}32.80{\mu}M$. The N:P ratio was in the range of 0.7~54.3 (mean 15.2) and the N:P slope was in the range of 11.67~13.75. The N:P ratios in this study were lower than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. The correlation ($R^2$) of total N:P ratio was as high as 0.95, indicating that the effect of the surrounding land or non-point sources was not significant. In conclusion, the spatial and temporal variation of nutrients in the east coast of Korea was determined by the vertical mixing of water mass with thermocline and mainly affected by physical factors such as influx of external water masses and coastal upwelling, and the influences from inflows from the land were minimal.

Determination of Salt Type, Salt Concentration, and Salt Application Method and Timing for Suppression of Stem Elongation in Grafted Cucumber Seedlings (오이 접목묘의 도장억제를 위한 염 스트레스 처리 효과)

  • Moon, Ji-Hye;Jang, Yoon-Ah;Yun, Hyung-Kweon;Lee, Sang-Gyu;Lee, Ji-Weon
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • This study aimed to examine a suppression effect of salinity on extension rate of stem elongation of cucumber seedlings (Cucumis sativus L.) grafted with roots of figleaf gourd plant. The effects of application methods, timings, and concentrations of two salt types, sodium chloride (NaCl) and calcium chloride ($CaCl_2$), were compared to untreated control plants. In result, an obvious suppression effect on the excessive elongation of stem was obtained by both sub-irrigated and medium-mixed NaCl salt. An improvement in quality of transplants was also obtained by the sub-irrigated NaCl salt. Foliar-applied NaCl caused visible leaf injury when the concentration was higher than 40 mM; but, with no effect on suppressing the stem elongation. When the NaCl was applied at 7 days after grafting, a higher concentration of NaCl was demanded for suppressing the stem elongation compared to an application at the day of grafting. No effect of the NaCl salt on the fresh weights of 36-day grown plants was observed; but, there was a negative effect on the number of female flowers at a high temperature season. Overall, the NaCl salt was more effective on slowing down the stem elongation and had the lower incidence of leaf injury than the $CaCl_2$ salt.