• Title/Summary/Keyword: Salinity of sea water

Search Result 758, Processing Time 0.026 seconds

Acoustic characteristics of Anchovy schools, and visualization of their connection with water temperature and salinity in the Southwestern Sea and the Westsouthern Sea of South Korea (서해 남부와 남해 서부의 한 정점에서 수온 및 염분과 멸치 어군의 특징의 관련성 시각화)

  • Kang, Myounghee;Choi, Seok-Gwan;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • Morphological and positional characteristics of anchovy aggregations, confirmed by trawling, were examined in two locations of the southern part of theWest Sea (T1) and the western side of South Sea (T11) of South Korea. Morphological characteristics (mean length, height and area) of the anchovy aggregations at T1 were smaller than those at T11, however the positional characteristics (distributional depth and bottom depth) of the aggregations at T1 were larger than those at T11. Diverse dataset such as the ship's cruise track, the cruse map, and interpolated three-dimensional-like water temperature were visualized in multiple dimensions. For a comprehensive understanding of the anchovy aggregations within their surrounding circumstances, the interpolated water temperature transferred to the location of anchovy aggregations at both stations were visualized based on geospatial information. Using quantitative investigation, the overall range of change in water temperature and salinity of anchovy aggregations at stations was considerably small. However, the water temperature and salinity of anchovy aggregations at T11 were somewhat higher than those at T1.

General Characteristics of the East Sea Intermediate Water (동해중층수의 일반적인 분포 특성)

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Lee, Jae-Hak;Kim, Bong-Chae;Hwang, Sang-Chull;Seung, Young-Ho;Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • To obtain the overall distribution patterns and characteristics of the East Sea Intermediate Water (ESIW), the historical data obtained by the Japan Maizuru Marine Observatory (MMO) and the Korea Ocean Research and Development Institute (KORDI) were analyzed. To obtain water characteristics of the ESIW on isopycnal surfaces, temperature, salinity and dissolved oxygen were interpolated at every 0.01 interval of potential density. And then the interpolated values were averaged at the same potential density. This potential density average method preserved the salinity minimum layer more clearly compared to the depth average method. The potential density(${\sigma}_{\theta}$) range of the ESIW was $26.9{\sim}27.3$. The representative potential density of the ESIW was found to be 27.2, because the characteristics of the ESIW was clear at this density. From the horizontal distributions of physical properties on the isopycnal surface of $27.2{\sigma}_{\theta}$ it is suggested that the low salinity ESIW circulates anticlockwise over the whole basin with the high salinity intermediate water. The low salinity intermediate water extended from the northwestern part to the east along the sub-polar front and to the Ulleung Basin along the east coast of Korea.

Acoustic Channel Formation and Sound Speed Variation by Low-salinity Water in the Western Sea of Jeju during Summer (여름철 제주 서부해역의 저염분수로 인한 음속변화와 음파채널 형성)

  • Kim, Juho;Bok, Tae-Hoon;Paeng, Dong-Guk;Pang, Ig-Chan;Lee, Chongkil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Salinity does not generally affect sound speed because it shows very small variations in the ocean. However, low salinity water appears in the Western Sea of Jeju Island every summer so that sound speed and sound propagation can change near sea surface. We calculated Sound Speed Profile (SSP) using vertical profiles of temperature and salinity, which were averaged over years of normal salinity and low salinity (<28 psu) from 30 years (1980~2009) at 3 sites of Korea Oceanographic Data Center (KODC). As a result, sound speed variation by low salinity alone was -5.36 m/s at sea surface and -1.35 m/s at 10m depth for low salinity environments. Gradient of SSP was positive down to 5 m depth due to decrease of sound speed near surface, leading formation of haline channel. Simulation of acoustic propagation using a ray model (Bellhop) confirmed the haline channel. Haline channel has formed 4 times while hydrostatic channel controlled by only pressure has formed 9 times for 30 years. The haline channel showed larger critical angles of rays than hydrostatic channel. Haline channel was also formed at some sites among 20 measurement sites in low salinity water mass which appeared on August $1^{st}$ 2010.

Effect of Salinity Change on Physiological Response and Growth of yearling Sea Bass, Lateolabrax japonicus (염분 변화에 따른 농어, Lateolabrax japonicus 유어의 생리 반응과 성장 차이)

  • 한형균;강덕영;전창영;장영진
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Two experiments were conducted for the physiological and growth responses of yearling sea bass, Lateolabrax japonicus (total length 24.4$\pm$1.5 cm, body weight 125.4$\pm$25.4 g) by the manipulation of salinity. To study the physiological responses of the sea bass by acute salinity change, we changed water salinity from 30 ppt into 2 ppt in rearing tank through 1 hour or 6 hour. To access the effect of salinity in the growth of sea bass, we also examined the growth of the sea bass in 2, 10, 20 and 30 ppt for 180 days. After salinity change, all yearlings appeared some stress response and ions changes in blood. The yearlings showed a slow recovery by an acute salinity exchange, but a fast recovery by slow salinity exchange. In the study about the influence of salinity in growth, although the food intake of yearlings in 20 ppt was significantly higher than the yearling in the other salinities, feed efficiency was higher in 10 ppt than the other salinities. However, the food intake and the feed efficiency in 2 ppt were significantly lower than in other groups. The growth of yearlings was significantly faster in 20 ppt than in the other salinities, but the growth showed significantly slower in 2 ppt than in the other salinities.

Relationship between Weather factors and Water Temperatures, Salinities in the West Sea of Korea (한국 서해에서 기상인자와 수온, 염분과의 관계)

  • Lee Jong Hee;Kim Dong Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.181-185
    • /
    • 2003
  • the effect if atmosphere is more important in the West sea of Korea than in other seas because of shallow water and heat storage if the water. The serial oceanographic observation data and coastal station data from NFRID, and the atmosphere data from KMA were used in order to find out the relationship between them The highest water temperature, salinity and weather factor were recorded in Aug, and the lowest of them in Feb. As the water deepens, the maximum time leg in water temperature and the minimum time leg in salinity. Water temperature have the maximum in Oct, the minimum in Apr at 75m of the 311-07 station with 100m depth water temperature (WT)-air temperature, WT-precipitation (Preci.) and salinity (Sal)-wind speed (WS) were in direct proportion, but WT-WS, Sal-AT and Sal-Preci in inverse proportion Water temperature and salinity I-ave time leg at the same depth the maximum had more the delay of $2\~4$ months at a depth if 20 meters than at the surface in all stations except for salinity at 307-05.

  • PDF

A Study in the neighbouring sea variation of Cheju and Influence of China Coastal Water by Topex/Poseidon Altimeter Data and in-situ Salinity Data

  • Cho Han Keun;Yoon Hong Joo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.188-191
    • /
    • 2004
  • Appearance and disappearance of the China Coastal Waters(CCW) in the neighbouring sea of Cheju Island was very different yearly but usually appeared strongly in summer. At this time, sea level and salinity were varied in this area by the influence of the CCW. Satellite data(T/P;Topex/Poseidon) and Salinity (NFRID;National Fisheries Research and Development Institute) were used from 1993 to 2001. We compared with TG data of NOR I and TIP data in the observed station(33 31'N, 12632'E). Coefficient of correlation was 0.6~0.8 with the exception of 1993 and 1995. And variations of salinity was higher than $32.00\%_{\circ}$ in the southwestern part of Cheju Island and the southern part of the South Sea of Korea during June-October and SLA(Sea level Anomaly) was 10-11cm. Salinity of the southeastern part was higher than those of the southwestern part and SLA was 12~13cm because of the influence of Tsushima Current.

  • PDF

Application of Optimum Multiparameter Analysis on Seawater Mixing in the South Sea of Korea Using Ra Isotopes

  • Lee Tongsup;Yang Han-Soeb;Kim Hyang-Bae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.143-150
    • /
    • 2000
  • Assuming that summer surface waters in the South Sea (northern East China Sea) are formed mostly by a mixing of three source water (Changjiang Discharge Water; Kuroshio Water and Yellow Sea Surface Water) we apply optimum multiparameter (OMP) analysis to calculate the mixing ratio of each source water to a given surface water. Since OMP requires more parameters than the number of water types (three in this study), we utilize two radium isotopes of dissolved $^{226}Ra\;and\;^{228}Ra$ along with temperature and salinity. Parameter values of each source water are deduced from in situ and historical data. Results with three source of waters on the surface waters are quite promising with less than $1\%$ of unanswered portions. Results not only reproduce the measured temperature and salinity faithfully but also discern the water masses of similar T and S according to their source water mixing. Extending OMP analysis to a whole water column obviously requires more parameters because more source waters are involved in the water mass formation. Original OMP routine utilized dissolved oxygen and nutrients. However, they seem to be perturbed too much by biological activities in the case of shallow waters. We discussed the use of other potential parameters. Also the benefit of parameter substitution is briefly introduced for the future OMP application on shallow waters.

  • PDF

Hydrodynamic Modeling of Saemangeum Reservoir and Watershed using HSPF and EFDC (HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의)

  • Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Jung-Hoon;Jung, Kwang Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Saemangeum lake is an artificial lake created by reclamation works and an estuary embankment since 2006. The sea water flows into the lake by the operation of two sluice gates, and the freshwater enters into the lake by the upper streams. For the reflection of hydrology and hydrodynamics effects in Saemangeum area, a hydrodynamics model was developed by connecting Hydrological Simulation Program with Fortran (HSPF) and Environmental Fluid Dynamic Code (EFDC). The HSPF was applied to simulate the freshwater discharge from the upper steam watershed, and the EFDC was performed to compute water flow, water temperature, and salinity based on time series from 2008 to 2009. The calibration and validation are performed to analyze horizontal and vertical gradients. The horizontal trend of model simulation results is reflected in the trend of observed data tolerably. The vertical trend is conducted an analysis of seasonal comparisons because of the limitation of vertically observed data. Water temperature reflects on the seasonal changes. Salinity has an effect on the near river input spots. The impact area of salinity is depending on the sea water distribution by gate operation, mainly.

An Experimental Study on Sea Water Freezing Behavior Along Horizontal Cooled Cylinder With Bubbly Flow (기포를 동반한 유동장에서의 냉각원과 주위의 해수동결에 관한 실험적 연구)

  • Park, D.S.;Yoon, S.H.;Kim, M.H.;Lee, Y.H.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.825-832
    • /
    • 2001
  • This study was experimentally performed to investigate freezing behavior of sea water along horizontal cooled a circular tube with bubbly flow. The experiments were carried out for a variety of parameter, such as sea water velocity, air-bubble flow rate, and cooled-tube temperature. The shape of freezing layer, freezing rate and salinity of frozen layer were observed and measured. And the flow patterns around cooled tube were visualized using the PIV to analyze the relationship between the flow structure and the freezing characteristics. It was found that the experimental parameters gave a great influence on the freezing rate and the salinity of the frozen layer.

  • PDF

Influence of Dam Water Discharge on the Oceanography and Fishery (해황과 어황에 미치는 댐 방수의 방향)

  • Chang Sun-duck
    • 한국해양학회지
    • /
    • v.1
    • /
    • pp.49-55
    • /
    • 1971
  • After the heavy precipitation from April 1969 to September 1970, more than 1.359 10$\^$6/㎥ of fresh water was discharged through diversion channel of the Namgang Dam. The sands and muds in the northern Sachon Bay were moved and swept away by the strong southsard flow which was observed to be speedier than five knots. The shellfish culture facility as well as the oysters and bivalves were buried. In Sachon Bay, a southward surface ebb current of approximately one knot stratifies above the northward flow of approximately 0.5 knot, which seems to be similar to the salt wedge estuary. The stratified current is responsible for the breaking of the gill nets and other fishing gears. The salinity of sea water in Chinju Bay decreased remarkably and the abnormal low salinity water lower than 5 was distributed in Sachon Bay. The low salinity water front was observed in eastern Chinju Bay and the Samchonpo Channel, where the salinity was increased from 4.6 to approximately 30 within half a tidal cycle. These caused the oysters and bivalves die, and drove anchovies and octopus out to the sea and prevented them from approaching the bay. The decrease of salinity causes the decrease of density and osmotic pressure of sea water. Turbid water would prevent the sunlight from penetrate into deep layer.

  • PDF