• Title/Summary/Keyword: Salinity distribution

Search Result 534, Processing Time 0.039 seconds

Numerical Modeling of Circulation and Salinity Distribution in Seomjin River Estuary

  • Made Narayana Adibhusana;Yonguk Ryu;Taehwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.526-526
    • /
    • 2023
  • Water circulation plays a crucial role in regulating the salinity of estuaries, which is essential for the survival of estuarine organisms. Changes in freshwater inflows or sea level can have significant impacts on the distribution and abundance of species within these ecosystems. To better understand these dynamics, this paper presents a study of water circulation and salinity distribution in Seomjin River estuary using the Finite Volume Coastal Ocean Model (FVCOM) numerical model. An extreme scenario was simulated to assess the potential impact of tidal currents and river flow discharge on circulation and salinity distribution. The results of this study have important implications for managing estuarine ecosystems and conserving their associated biodiversity.

  • PDF

Distribution and Circulation of Autumn Low-salinity Water in the East Sea (동해의 가을철 저염수 분포 및 유동)

  • Lee, Dong-Kyu;Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Seawater with salinity of 32.5 psu or less is observed in the southern Japan/East Sea (JES) every autumn. It is confined to a surface layer 30-45 m in depth that expands to cover the entire JES in October. Two sources of "autumn low-salinity water" have been identified from historical hydrographic data in the western JES: East China Sea (ECS) water mixed with fresh water discharge from the Yangtze River (Changjiang) and seawater diluted with melted sea ice in the northern JES. Low-salinity water inflow from the ECS begins in June and reaches its peak in September. Low-salinity water from the northern JES expands southward along the coast, and its horizontal distribution varies among years. A rare observational study of the entire JES in October 1969 indicated that water with salinity less than 33.0 psu covered the southwestern JES; the lowest salinity water was found near the Ulleung Basin. In October 1995, the vertical distribution of salinity observed in a meridional section revealed that water with salinity of 33.6 psu or less was present in the area north of the subpolar front.

Soil Salinity and Continuum Distribution of Vegetation on the Three Reclaimed Tidal Flats of Kyonggi-Bay in the Mid-West Coast of Korea (한국 중부 서해안 경기만 일대 3개 간척지의 토양 염농도와 식생의 연속분포)

  • Kim, Eun-Kyu;Chun, SoUl;Joo, Young-K.;Jung, Yeong-Sang;Jung, Hyeung-Gun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.83-93
    • /
    • 2008
  • Assessing for flora distribution is necessary for land management and environmental research in reclaimed lands. This study was conducted to find out the relationship between vegetation distribution and soil salinity on three reclaimed tidal flats of Kyonggi-bay in the mid-west coast of Korea. We investigated the soil salinity and identified the vegetation at the continuum distribution spots, and describe the characteristics of continuum distribution. On the reclaimed tidal flats, spatial variation of vegetation formed partially, however as the result for connection of each spatial variation along with the soil salinity, continuum distribution formed and it was overlapped edaphic gradient with vegetation distribution, it means that the continuum distribution correspond with soil salinity gradient, as the evidence high salt tolerance species occurred at high saline spots, non salt tolerance species occurred at low saline spots. On the aged reclaimed tidal flats, continuum type was various and also clearly distinguished but it was not clear on the early stage of reclamation. The continuum distribution distinguished sequential and non-sequential type. Sequential type started from high saline zone and connected to low saline zone gradually, on this type, vegetation changed from pioneer halophyte to facultative halophyte and glycophyte along with the salinity gradient. Non-sequential type formed by non-sequential change of soil salinity, on this type, vegetation distribution was non-regular form because it has not changed gradually. In the aged reclaimed land, vegetation wilted zone existed with high salinity, and continuum distribution started from this zone with bare patch.

Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite (Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구)

  • Lee, Dong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

Distribution Pattern of Zooplankton in the Han River Estuary with respect to Tidal Cycle

  • Youn, Seok-Hyun;Choi, Joong-Ki
    • Ocean Science Journal
    • /
    • v.43 no.3
    • /
    • pp.135-146
    • /
    • 2008
  • The monthly distribution of zooplankton communities in Han River estuary was investigated at two stations from July 1998 to June 1999. Monthly mean abundance of total zooplankton varied remarkably, with the range from 20 $indiv.{\cdot}m^{-3}$ to 19,600 $indiv.{\cdot}m^{-3}$. During the study period, dominant species of zooplankton community were dinoflagellate Noctiluca scintillans, copepods Paracalanus indicus, Paracaanus crassirostris, Acartia hongi, Acartia ohtsukai, and meroplanton cirriped larvae. According to tidal states, relative high abundance occurred at high tide without regard to season. The temporal distribution of abundance implied that the reduced salinity probably limited the zooplankton populations and the fluctuations of salinity were an important factor in the variation of abundance. However, the results of salinity tolerance test shows that the variations in salinity do not directly influence the decrease of abundance. This study shows that the relatively high abundance of zooplankton near high tide seems to be related with the expansion of abundant zooplankton inhabiting Incheon coastal waters through tidal currents.

Relation of Freshwater Discharge and Salinity Distribution on Tidal Variation around the Yeomha Channel, Han River Estuary (한강하구 염하수로 주변의 조석변화에 따른 염분분포와 담수와의 상관관계)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.269-276
    • /
    • 2012
  • Salinity distribution in estuary and tidal river is presented by many parameters including tidal forcing, river discharge and geographical effect. Understanding the characteristics of salinity structure is very important in the aspect of water-quality, ecological, and engineering viewpoint. Field measurement was carried out to study the distribution of salinity structure at 2 surface stations at Yeomha channel in the Han River estuary. The results of short- and long-term salinity change according to short and long tidal variability is investigated. For analyzing the axial salinity distribution at Yeomha channel, the salinity data from NFRDI is used in this study. The relationship between freshwater discharge and salinity distribution is represented through the nonlinear regression equation. The empirical equation for salt intrusion length scale, including tide, river discharge, and topographical effect is presented. As the comparison of empirical equation and existing data collected in study area, the characteristic of salt intrusion length and salinity distribution is changed by tide, fresh water, and geographical effect.

Vegetation Distribution and Soil Salinity on Daeho Reclaimed Tidal Land of Kyonggi-Bay in the Mid-West Coast of Korea (우리나라 중서부 서해안 대호 간척지의 식생 분포와 토양 염농도)

  • Kim, Eun-Kyu;Jung, Yeong-Sang;Joo, Young K.;Jung, Hyeung-Gun;Chun, Soul;Lee, Sung-Hun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.447-453
    • /
    • 2009
  • Vegetation distribution and soil salinity were surveyed on the conservation plot in the Daeho reclaimed tidal land, in where the plants species distribution was more various than a periodically inundated tidal flat and the early stage of reclamation. According to the soil salinity where the vegetation patches were occurred, the mono patches of Salicornia europaea, Suaeda maritima, and Suaeda glauca were distributed in the average range of 31.05 dS/m in soil salinity, the mixed patches of them were distributed in the average range of 42.75 dS/m. Therefore, Salicornia europaea, Suaeda maritima, and Suaeda glauca showed strong salt tolerance. The mono patches of Aster tripolium, Sonchus brachyotus, and Scirpus planiculm were distributed in the range of 11.73 dS/m in soil salinity, and the mixed patches were distributed in the average range of 9.43 dS/m. Therefore Aster tripolium, Sonchus brachyotus, and Scirpus planiculmis showed moderate salt tolerance. The mono patches of Imperata cylindrica, Trifolium pratense, Miscanthus sinensis, Setaria viridis, and Trisetum bifidum were distributed in the range of 2.42 dS/m in soil salinity. These species showed characteristics of glycophytes with weak salt tolerance. The distribution of vegetation patches was influenced by the soil salinity as pioneer halophytes patches occurred at higher soil salinity zone than facultative halophytes patches, glycophytes patches occurred at lower soil salinity zone than facultative halophytes. These results suggested that occurrence of plant species and plant distribution type might be useful index to evaluate the soil salinity and desalinization in the reclaimed land of the midwest coastal area of Korea.

Distribution of Anchovy School catched by the lift Net and Environmental Factors in the Kamak Bay 1. Relation between distribution of the Anchovy School and Temperature and salinity (가막만에서의 멸치 들망 어장의 분포.이동과 환경 요인의 관계 1.수온.연분과 어군의 분포)

  • 서영준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.267-276
    • /
    • 1999
  • In order to investigate the properties in distribution and movement of anchovy school catches by the lift net in the Kamak bay and their relation to the environmental factors, i.e., the water temperature and the salinity were observed form June to August in 1997 and compared with the catch of anchovy by the lift net. The results obtained are summarized as follows;1) The water temperature and salinity ranged form 20.0 to $27.0^{\circ}C\;and\;from\;31.2\;to\;33.8\texperthousand$, respectively. The water temperature and salinity at the fishing points ranged form 19.7 to $27.2^{\circ}C\;and,\;from\;30.5\;to\;33.8^{\circ}C$ respectively.2) The water temperature influenced remarkably on the distribution and movement of anchovy school. But the salinity influenced little on the distribution and movement. 3) The catch of anchovy was highest on July, poor second on August, and lowest on June. Anchovy school can be presurmed, they are come from north of bay, visited and distributed through east of bay at the middle of June. Moreover, they spreaded in all bay. Then gradually, when July arrive, they go to the south th nearest the coasts, and they are outflow through the south entrance of bay at the end of August.

  • PDF

Characteristics of food waste: water and salinity contents

  • Lee, Jae-Han;Kang, Yoon-Gu;Luyima, Deogratius;Park, Seong-Jin;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.375-380
    • /
    • 2020
  • The high intrinsic water content and salinity of food waste prevent a smooth composting process and consequently cause social, economic and environmental problems. In this study, we investigated the distribution of the water content and salinity in food wastes to obtain useful primary data to ensure adequate and quality recycling. A total of 300 food waste (FW) samples were collected from residential apartments (home generated FW), a wide range of restaurants, i.e., restaurant generated FW that included Korean, Chinese, Japanese and western FWs, and several places that included food waste processing facilities (dehydrated FW cakes). The collected food wastes were oven dried for 48 hours at 80℃ after which the water and salinity contents were analyzed. The results show that the average water content of the FWs was 72.45 ± 10.51%, and the average salinity content was 2.03 ± 0.57%. Furthermore, the salinity of the collected FWs was characterized by where the FW was generated. By location, the salinity concentration of home generated FW was 2.30% while western food had the lowest salinity concentration of 1.18%. However, dehydrated cakes had the highest salinity concentration of 2.84%. Especially, the distribution of the salinity content in food wastes can form the basis for improving the compost quality in food waste recycling.