Browse > Article

Soil Salinity and Continuum Distribution of Vegetation on the Three Reclaimed Tidal Flats of Kyonggi-Bay in the Mid-West Coast of Korea  

Kim, Eun-Kyu (Juk jeon high school)
Chun, SoUl (Institute of Basic Science, Yonsei University)
Joo, Young-K. (Department of Bioresources and Technology, Yonsei University)
Jung, Yeong-Sang (Department of Biological Environment, Kangwon National University)
Jung, Hyeung-Gun (Department of Environmental Engineering, Yonsei University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.41, no.2, 2008 , pp. 83-93 More about this Journal
Abstract
Assessing for flora distribution is necessary for land management and environmental research in reclaimed lands. This study was conducted to find out the relationship between vegetation distribution and soil salinity on three reclaimed tidal flats of Kyonggi-bay in the mid-west coast of Korea. We investigated the soil salinity and identified the vegetation at the continuum distribution spots, and describe the characteristics of continuum distribution. On the reclaimed tidal flats, spatial variation of vegetation formed partially, however as the result for connection of each spatial variation along with the soil salinity, continuum distribution formed and it was overlapped edaphic gradient with vegetation distribution, it means that the continuum distribution correspond with soil salinity gradient, as the evidence high salt tolerance species occurred at high saline spots, non salt tolerance species occurred at low saline spots. On the aged reclaimed tidal flats, continuum type was various and also clearly distinguished but it was not clear on the early stage of reclamation. The continuum distribution distinguished sequential and non-sequential type. Sequential type started from high saline zone and connected to low saline zone gradually, on this type, vegetation changed from pioneer halophyte to facultative halophyte and glycophyte along with the salinity gradient. Non-sequential type formed by non-sequential change of soil salinity, on this type, vegetation distribution was non-regular form because it has not changed gradually. In the aged reclaimed land, vegetation wilted zone existed with high salinity, and continuum distribution started from this zone with bare patch.
Keywords
Reclaimed tidal flat; Soil salinity; Continuum distribution; Halophyte;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Noy-Meir, I. and E. Van der Maarel. 1987. Relations between community theory and community analysis in vegetation science: some historical perspectives. Vegetatio 69: 5-15.   DOI
2 Vince, S. W. and A. A. Snow. 1984. Plant zonation in an Alaskan slat marsh. I. Distribution, abundance, and environmental factors. J. Ecol. 72: 651-667.   DOI   ScienceOn
3 Bertness, M. D. 1991a. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecol. 72: 125-137.   DOI   ScienceOn
4 Bertness, M. D. 1991b. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecol. 72: 138-148.   DOI   ScienceOn
5 Bonis, A., J. B. Bouzille, B. Amiaud, and G. Loucougaray. 2005. Plant community patterns in old embanked grasslands and the survival of halophytic flora. Flora 200: 74-87.   DOI   ScienceOn
6 Bouzillé, J. B., E. Kerneis, A. Bonis, and B. Touzard. 2001. Vegetation and ecological gradients in abandoned salt pans in western France. J. Vege. Sci. 12: 269-278.   DOI   ScienceOn
7 Cooper, A. 1982. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytologist 90: 263-275.   DOI   ScienceOn
8 Deeter, L. M. 2002. Sodium chloride tolerance of selected herbaceous perennials and the effects of sodium chloride on osmotic adjustment and ionic uptake in three species of herbaceous perennials. p. 28. Ph. D. dissertation, Ohio State University.
9 Culberson, S. D. 2001. The interaction of physical and biological determinants producing vegetation zonation in tidal mashes of the San Francisco Bay Estuary, California, USA. Ph.D. dissertation, University of California, Ecology.
10 Ellison, A. M. 1987. Effects of competition, disturbance, and herbivory on Salicornia europaea. Ecol. 68: 576-586.   DOI   ScienceOn
11 Joenje, W. 1974. Production and structure in the early stages of vegetation development in the Lauwerszee-poder. Vegetatio 29: 101-108.   DOI
12 Jeonje, W., and H. J. During. 1977. Colonisation of a desalination Waddenpolder by byrophyte. Vegetatio 35: 177-185.   DOI
13 Joenje, W. 1979. Plant succession and nature conservation of newly embanked tidal flats in the Lawerszeepolder. p. 617-634. In Jefferies, R. L. and A. J. Davy. eds. Ecological process in coastal environments. Blackwell, Oxford.
14 Kravchenko, A. N., C. W. Boast, and D. G. Bullock. 1999. Multifractal analysis of soil spatial variability. Agro. J. 91: 1033- 1041.   DOI   ScienceOn
15 Kwon, H. J., W. I. Chung, and J. Y. Cho. 1983. Studies on the variation of vegetation and rice root formation accompanied with the desaltation at the reclaimed tidal fields. Korean J. Crop Sci. 28(3): 305-309.   과학기술학회마을
16 Lee, B. M., S. I. Shim, S. G. Lee, B. H. Kang, I. M. Chung, and K. H. Kim . 1999. Physiological response on saline tolerance between halophytes and glycophytes. Korean J. Environ. Agri. 18(1): 61-65.
17 Lee, K. B., J. G. Kang, J. Li, D. B. Lee, C. W. Park, and J. D. Kim. 2007. Evaluation of salt-tolerance plant for improving saline soil of reclaimed land. Korean J. Soil Sci. Fert. 40(3): 173-180.
18 Park, S. H. 2001. Foreign Naturalized plant of Korea. Dae-Won Publishing Co., Seoul.
19 Mahall, B. E. and R. B. Park. 1976a. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay. II. Soil water and salinity. J. Ecol. 64: 793- 809.   DOI   ScienceOn
20 Noordwijk-Puijk, K. V., W. G. Beeftink, and P. Hogeweg. 1979. Vegetation development on salt-marsh flats after disappearance of the tidal factor. Vegetatio 39: 1-13.   DOI
21 Silvestri, S., A. Defina, and M. Marani. 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine Coastal and Shelf Science 62: 119-130.   DOI   ScienceOn
22 Eghabll, B., L. N. Mielke, G. A. Calvo, and W. W. Wilhelm. 1993. Fractal description of soil fragmentation for various tillage methods and crop sequences. Soil. Sci. Soc. Am. J. 57: 1337-1341.   DOI   ScienceOn
23 Kim, C. S. 1983. Distribution of halophyte community. Nature conservation 41: 31-36.
24 Clarke, L. D., and N. J. Hannon. 1970. The mangrove swamp and salt marsh communities of the Sydney district. III. Plant growth in relation to salinity and waterlogging. J. Ecol. 58: 351-369.   DOI   ScienceOn
25 Hong, S. W., Y. C. Hah, and Y. K. Choi. 1969. Biologcal improvement of reclaimed tidal land(I), Desalination effects of saline soil by the growth of certain halophytes. Korean J. Botany 12(1): 7-14.
26 Min, B. M. and J. H. Kim. 1997. Soil texture and desalination after land reclamation on the west coast of Korea. Korean J. Ecol. 20(2): 133-143.
27 Armstrong, A. C. 1986. On the fractal dimension of some transient soil properties. Soil. Sci. Soc. Am. J. 37: 641-652.   DOI
28 Austin, M. P. 1985. Continuum concept, ordination methods and niche theory. Ann. Rev. Ecol. Syste. 16: 39-61.   DOI
29 Burrough, P. A. 1983b. Multiscale sources of spatial variation in soil: II. A non-Brownian fractal model and its application in soil. Soil. Sci. Soc. Am. J. 34: 599-620.   DOI
30 Lee, S. H, Y. An, S. H. Yoo, and S. M. Lee. 2000. Changes in early stage vegetation succession as affected desalinization process in Dae-Ho reclaimed land. Korean J. Environ Agri. 19(4): 364-369.
31 Park, S. H. 2001. Colored Illustrations of Naturalized Plants of Korea. Ilchokak Co., Seoul.
32 Olff, H., J. De Leeuw, J. P. Bakker, R. J. Platerink, H. J. Van Wijnen, and W. De Munck. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J. Ecol. 85: 799-814.   DOI   ScienceOn
33 USDA-ARS George E. Brown, Jr. Salinity Lab. 1999. Halophyte database salt-tolerance plants and their uses. USDA ARS by N.P. Yensen http://www.ussl.ars.usda.gov/pls/caliche/halophyte.preface
34 Kim, D. Y. and J. S. Lee. 1983a. Ecological studies on the halophyte community of the coast.II. On the salt marsh of Cheongha. p. 409-416. Gunsan National University.
35 Tran, T. S. and R. R. Simard. 1993. Mehlich III-Extractable Elements. p. 43-49. In Carter, M. R. ed. Soil sampling and methods of analysis. Lewis Publishers, London.
36 Lee, Y. N. 2002. Flora of Korea. Kyo-Hak Publishing Co., Ltd., Seoul.
37 Bertness, M. D. and S. M. Yeh. 1994. Cooperative and competitive interactions in the recruitment on marsh elders. Ecol. 75(8): 2416- 2429.   DOI   ScienceOn
38 Ihm, B. S. 2001. Distribution of halophytes on the south coast of Korea. Nature Conservation 116: 9-14.
39 Burrough, P. A. 1983a. Multiscale sources of spatial variation in soil: I. The application of fractal concepts to nested levels of soil variation. Soil. Sci. Soc. Am. J. 34: 577-597.   DOI
40 Mahall, B. E. and R. B. Park. 1976b. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay. III. Soil aeration and tidal immersion. J. Ecol. 64: 811-819.   DOI   ScienceOn
41 Zhao, K., F. Hai, and I. A. Ungar. 2002. Survey of halophyte species in China. Plant Sci. 163(3): 491-498.   DOI   ScienceOn
42 Kim, D. Y. and J. S. Lee. 1983b. Ecological studies on the halophyte community of the coast.II. On the reclaimed tidal flat land of Naichodo Ri. p. 399-407. Gunsan National University.
43 US Salinity Laboratory Staff. 1954. Diagnosis and improvement of Saline and alkali soils. USDA Handbook No. 60.
44 Westhoff, V. and K. V. Sykora. 1979. A study of the influence of desalination of the Juncetum gerardii. Acta Botanica Neerlandica 28: 505-512.   DOI
45 Jung, Y. S., W. H. Lee, J. H. Joo, I. H. Yu, W. S. Shin, Y. Ahn, and S. H. Yoo. 2003. Use of electromagnetic inductance for salinity measurement in reclaimed saline land. Korean J. Soil Sci. Fert. 36(2): 57-65.
46 Lee, T. B. 1999. Illustrated flora of Korea. Hayng-Moon Publishing Co., Seoul.
47 Sheldrick, B. H. and C. Wang. 1993. Particle Size Distribution. p. 499-511. In Carter, M. R. ed. Soil sampling and methods of analysis. Lewis Publishers, London.
48 Metcalfe, W. S., A. M. Ellison, and M. D. Brtness. 1986. Survivorship and spatial development of Spartina alterniflora Loisel. (Gramineae) seedlings in a New England salt marsh. Ann. Botany 58: 249-258.   DOI
49 Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecol. 44(3): 445-456.   DOI   ScienceOn
50 De Jong, S. M. and P. A. Burrough. 1995. A fractal approach to the classification of Mediterranean vegetation types in remotely sensed images. Photogramm Engineeging Remote Senssing 61: 1041-1053.
51 Shumway, S. W. and M. D. Bertness. 1992. Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia 92: 490-497.   DOI
52 Austin, M. P. and T. M. Smith. 1989. A new model for the continuum concept. Vegetatio 83: 35-47.   DOI
53 Min, B. M. 1985. Changes of soil and vegetation in costal reclaimed lands, west coast of Korea. Seoul National University, Ph. D. dissertation, Department of Botany.
54 Park, I. K. 1969. A study of continuum of the salt plant communities in the Juan coastal area. Graduate School of Education, Seoul National University, Master thesis, Department of Biology Education.
55 Lee, J. Y., J. O. Guh, H. S. Chang, and S. H. Bae. 1983. Weed distribution and its plant sociological aspects on the polder land. Korean J. Weed Sci. 4(2): 135-142.
56 Patten, R. S. and J. E. Ellis. 1995. Patterns of species and community distributions related to environmental gradients in an arid tropical ecosystem. Vegetatio 117: 69-79.   DOI
57 Sanderson, E. W., S. L. Ustin, and T. C. Foin. 2000. The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA. Plant Ecol. 146: 29-41.   DOI   ScienceOn
58 Gravesen, P. 1972. Plant communities of salt-marsh origin at Tipperne, Western Jutland. Botanisk Tidsskrift 67: 1-32.
59 Callaway, R. M., S. Jones, W. R. Ferren, Jr., and A. Parikh. 1990. Ecology of a mediterranean-climate estuarine wet-land at Carpinteria, California: plant distributions and soil salinity in the upper marsh. Can. J. Botany 69: 1139-1146.
60 Kim, C. S. 1971. An ecological study on the process of plant community formation in tidal land. Korean J. Botany 14(4): 27-33.
61 Penninos, S. C. and R. M. Callaway. 1992. Salt marsh plant zonation: The relative importance and physical factors. Ecol. 73(2): 681-690.   DOI   ScienceOn
62 Armstrong, W., E. J. Wright, S. Lythe, and T. J. Gaynard. 1985. Plant zonation and effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 73: 323-339.   DOI   ScienceOn
63 Kang, B. H., and S. I. Shim. 1998. Screening of tolerant plants and development of biological monitoring technique for saline stress. I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Korean J. Environ. Agri. 17(1): 26-33.