KSII Transactions on Internet and Information Systems (TIIS)
/
제12권5호
/
pp.2287-2312
/
2018
Extracting key visual information from images containing natural scene is a challenging task and an important step for the visually impaired to recognize information based on tactile graphics. In this study, a novel method is proposed for extracting salient regions based on global contrast enhancement and saliency cuts in order to improve the process of recognizing images for the visually impaired. To accomplish this, an image enhancement technique is applied to natural scene images, and a saliency map is acquired to measure the color contrast of homogeneous regions against other areas of the image. The saliency maps also help automatic salient region extraction, referred to as saliency cuts, and assist in obtaining a binary mask of high quality. Finally, outer boundaries and inner edges are detected in images with natural scene to identify edges that are visually significant. Experimental results indicate that the method we propose in this paper extracts salient objects effectively and achieves remarkable performance compared to conventional methods. Our method offers benefits in extracting salient objects and generating simple but important edges from images containing natural scene and for providing information to the visually impaired.
정지영상에서 공간 관심맵을 생성하는 다양한 방법들이 소개되어 왔고, 최근에는 동영상의 운동정보를 활용하는 운동 관심맵 예측 기법이 활발히 연구되고 있다. 운동 관심맵은 운동정보 및 영역분할을 활용하고 있지만, 일반적인 영상에서는 만족스러운 데이터를 얻는 것은 어려움이 존재한다. 또한 우수한 관심맵을 얻기 위해서는 객체 운동, 카메라 운동 등의 운동유형 정보가 필요하기 때문에 다양한 자연영상을 대상으로 적용하면 성능 저하가 발생한다. 본 논문에서는 상기 언급한 문제점들을 극복할 수 있는 운동기반 관심맵 생성 방법을 제안한다. 공간 관심맵에 운동 정보를 결합하고, 운동 복잡도를 활용한다. 또한 근접 모델을 이용하여 주변 픽셀들의 관심도를 유사하게 함으로써, 동일 객체 또는 배경 영역이 유사한 값을 가지도록 한다. 실험에서는 다양한 동영상 데이터에 제안 방법을 적용하여 성능 검증을 수행하였다. 공간 관심도의 개선 여부를 증명하기 위해서 공간 관심맵 방법과의 객관적 성능 평가를 통해서 제안 방법이 공간 관심맵보다 운동 픽셀의 경우에 평균적으로 관심도 값이 +38 정도 향상되는 것을 보여준다. 또한 참조 데이터가 있는 4개의 동영상을 대상으로 얻은 ROC는 만족스러운 결과를 보여준다.
A color image compression based on saliency map was proposed. The proposed method provides higher quality in saliency blocks on which people's attention focuses, compared with non-saliency blocks on which the attention less focuses at a given bitrate. The proposed method uses 3 different quantization tables according to each block's saliency level. In the experiment using 6 typical images, we compared the proposed method with JPEG and other conventional methods. As the result, it showed that the proposed method (Qup=0.5*Qx) is about 3.1 to 1.2 dB better than JPEG and others in saliency blocks in PSNR at the almost similar bitrate. In the comparison of result images, the proposed one also showed less error than others in saliency blocks.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3245-3271
/
2016
To obtain well-dehazed images at the receiver while sustaining low bit rates in the transmission pipeline, this paper investigates the effects of image dehazing methods using dehazing contrast-enhancement filters on image compression for surveillance systems. At first, this paper proposes a novel image dehazing method by using a new method of calculating the transmission function—namely, the direct denoising method. Next, we deduce the dehazing effects of the direct denoising method and image dehazing method based on dark channel prior (DCP) on image compression in terms of ringing artifacts and blocking artifacts. It can be concluded that the direct denoising method performs better than the DCP method for decompressed (reconstructed) images. We also improve the direct denoising method to obtain more desirable dehazed images with higher contrast, using the saliency map as the guidance image to modify the transmission function. Finally, we adjust the parameters of dehazing contrast-enhancement filters to obtain a corresponding composite peak signal-to-noise ratio (CPSNR) and blind image quality assessment (BIQA) of the decompressed images. Experimental results show that different filters have different effects on image compression. Moreover, our proposed dehazing method can strike a balance between image dehazing and image compression.
In this paper, we propose the defect emphasis in TFT-LCD panel image. The defect emphasis image consist of S(Shape) map and B(Brightness) map. S map based on DoG(difference of gaussian) is made with the mura defect shape characteristic. And B map use defect intensity property that defect intensity is higher than background. The experiments were conducted to evaluate the performance of the proposed defect emphasis method. The results of experiments show the validity of the defect emphasis using the proposed method.
본 논문에서는 인간 인지 기반 비디오 코딩을 위한 비디오 처리 방법을 개발한다. 제안하는 방법은 율-왜곡(rate-distortion) 최적화의 영향뿐만 아니라 제한적인 시, 공간 해상도, 지역적인 움직임 이력(history), visual saliency에 의한 인간 시각 인지를 고려한다. 이러한 인간의 인지적인 효과들을 고려하기 위하여 본 논문에서는 움직임 패턴을 모델링하고 Hedge 알고리듬을 사용하여 움직임 패턴을 결정하는 기법을 개발한다. 그 다음, 제안한 움직임 패턴과 기존의 visual saliency와의 결합을 통하여 인간 시각 인지 모델을 수립한다. 제안된 인간 시각 인지 모델을 구현하기 위하여 기존의 foveation filtering 방법을 확장한다. 시각적 자극이 덜한 지역만을 부드럽게(smoothing)하는 기존의 foveation filtering 기법과 비교하여 제안하는 foveation filtering 기법은 인간 시각 인지 모델에 따라 지역적으로 부드럽게 또는 지역적 특성을 향상시킴으로써, 시각적 자극이 덜한 지역에서 줄여진 대역폭을 효과적으로 시각적 자극이 큰 지역에서 사용하도록 이동 시킬 수 있는 장점이 있다. 제안된 방법의 성능은 전반적인 비디오 화질을 만족할 뿐만 아니라 인간이 인지하는 화질의 품질을 12%~44% 향상시킨다.
본 논문에서는 HVS(human visual system)의 특성을 고려한 새로운 스케일러블 코딩방법을 제안한다. 제안된 방법은 먼저 영상 내에서 관심영역(saliency map)을 찾고 관심영역을 제외한 부분에 에지 보존 필터를 적용한다. 그 영상은 정해진 양자 파라미터 값으로 인코딩 되어 제안된 코딩 시스템의 베이스 층(base layer)이 된다. 기존 스케일러블 코딩 표준에서의 베이스 층과 다르게 본 논문의 베이스 층은 관심 있는 중요영역(foreground)을 보존하고 또한 배경(background)의 에지 성분도 보존한다. 기본 층이 전송되면 개선층(enhancement layer)은 원 영상과 복원된 베이스 층 영상간의 차분 영상에서 관심영역 순으로 보내진다. 실험은 HEVC 를 바탕으로 수행되었고 스케일러블 코딩 표준인 SHVC 와 관심영역에서 비교를 했을 때 제안된 알고리즘이 더 높은 PSNR 을 가지는 것을 확인하였다. 또한 전체적으로 지각적인 품질(perceptual quality) 또한 향상되었음을 확인하였다.
본 논문에서는 중요도 지도를 사용한 화소값 사이 척력 기반 영상 대조비 향상 기법을 제안한다. 공간상에서 인접한 화소들 사이에 자주 발생하는 화소값들의 차이를 크게 하면 효과적으로 영상의 디테일을 두드러지게 할 수 있다. 대조비 증가를 위해 화소값 사이 척력을 정의하고, 유효 화소값 사이 척력들의 합을 사용하여 대조비의 증가 정도를 조절한다. 중요도 지도는 영상의 화소마다 사람의 시선이 머무르는 정도를 상대적인 수치로 나타낸 것이다. 따라서 영상 화질을 개선할 때 중요도 지도를 사용하면 사람의 시선을 끄는 화소값들의 대조비를 선택적으로 높일 수 있다. 실험 결과를 통하여 제안 기법이 우수한 화질개선 영상을 생성함을 확인한다.
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.158-168
/
2024
There is hardly any person in modern times who has not taken soft drinks instead of drinking water. The rate of people taking soft drinks being surprisingly high, researchers around the world have cautioned from time to time that these drinks lead to weight gain, raise the risk of non-communicable diseases and so on. Therefore, in this work an image-based tool is developed to monitor the nutritional information of soft drinks by using deep convolutional neural network with transfer learning. At first, visual saliency, mean shift segmentation, thresholding and noise reduction technique, collectively known as 'pre-processing' are adopted to extract the location of drinks region. After removing backgrounds and segment out only the desired area from image, we impose Discrete Wavelength Transform (DWT) based resolution enhancement technique is applied to improve the quality of image. After that, transfer learning model is employed for the classification of drinks. Finally, nutrition value of each drink is estimated using Bag-of-Feature (BoF) based classification and Euclidean distance-based ratio calculation technique. To achieve this, a dataset is built with ten most consumed soft drinks in Bangladesh. These images were collected from imageNet dataset as well as internet and proposed method confirms that it has the ability to detect and recognize different types of drinks with an accuracy of 98.51%.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권9호
/
pp.4386-4404
/
2016
Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.