• Title/Summary/Keyword: Sailing safety

Search Result 140, Processing Time 0.02 seconds

A Realization on Interface Module & Communications Protocol of AtoN AIS (AtoN AIS의 인터페이스 모듈 및 통신프로토콜 구현)

  • Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1103-1107
    • /
    • 2009
  • Lately, trend is change to concept that management traffic of ship is magnified gradually to near shore waters from harbor. Therefore, introducing the AtoN AIS technology that install AIS in the ground station, lighthouse, bouy, sea facilities etc.. that is support equipment for safety sailing of ship and safety security of harbor and ship administration. The operation and maintenance of AtoN AIS are required to efficient method. With this actuality, sea advanced nation They has been apply for developing AtoN AIS equipment that is connected equipment of technology standard in IALA. Because of it is expected to depend equipment in income, that is required to domestic technology of the AtoN AIS. This paper is targeted to development that is suitable automation AtoN AIS equipment in environmental peculiarity for construnstrunstrAtoN operating administration center. It has been realization the interface module for control and monitoring system and the communications protocol for information interchange.

  • PDF

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

A Study on the Performance Predictions of Twin Sail Drone (트윈 세일 드론의 성능추정에 관한 연구)

  • Ryu, In-Ho;Yang, Changjo;Han, Won-heui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.827-834
    • /
    • 2022
  • Recently, marine surveys using unmanned ships are attracting attention, and research on small unmanned ships using sails is on the rise. Sail drones can be used for marine surveys, monitoring, and pollution management. Therefore, in this study, using the method of estimating the ship speed for twin sail drones, the optimal conditions for sailing are checked, and the performance to be considered in the initial design stage, such as the motion performance and resistance of the sail drone. Consequently, the twin sail drone had a speed lower than 2.0 m/s, and the stability satisfied the rule by DNV. In addition, the maximum speed at an angle of attack of 20° at TWA 100° was 1.69 m/s and that at an angle of attack of 25° at TWA 100° was 1.74 m/s.

Passage Planning in Coastal Waters for Maritime Autonomous Surface Ships using the D* Algorithm

  • Hyeong-Tak Lee;Hey-Min Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2023
  • Establishing a ship's passage plan is an essential step before it starts to sail. The research related to the automatic generation of ship passage plans is attracting attention because of the development of maritime autonomous surface ships. In coastal water navigation, the land, islands, and navigation rules need to be considered. From the path planning algorithm's perspective, a ship's passage planning is a global path-planning problem. Because conventional global path-planning methods such as Dijkstra and A* are time-consuming owing to the processes such as environmental modeling, it is difficult to modify a ship's passage plan during a voyage. Therefore, the D* algorithm was used to address these problems. The starting point was near Busan New Port, and the destination was Ulsan Port. The navigable area was designated based on a combination of the ship trajectory data and grid in the target area. The initial path plan generated using the D* algorithm was analyzed with 33 waypoints and a total distance of 113.946 km. The final path plan was simplified using the Douglas-Peucker algorithm. It was analyzed with a total distance of 110.156 km and 10 waypoints. This is approximately 3.05% less than the total distance of the initial passage plan of the ship. This study demonstrated the feasibility of automatically generating a path plan in coastal navigation for maritime autonomous surface ships using the D* algorithm. Using the shortest distance-based path planning algorithm, the ship's fuel consumption and sailing time can be minimized.

A Study on the Hull Acceleration Analysis of Car Ferry Ship for Securing Safety Evaluation (고박안전성 평가를 위한 카페리선박의 선체가속도 분석에 관한 연구)

  • Yu, Yong Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.587-593
    • /
    • 2020
  • The securing safety of ferry ships on the domestic coast is evaluated by comparing the external force applied and the securing device based on the cargo weight and hull acceleration that can exist at the loaded position. The hull acceleration based on the domestic standard, which is the basis for securing safety evaluation, is applied without reflecting the characteristics of the ship and the sailing conditions. In this study, a total of 12 acceleration measurements were performed at four points of the hull of a ship with a DWT 6,800 ton class 15.5 knots passing through Busan-Jeju to analyze the hull acceleration of the domestic coastal ferry ship. Data were collected for the buoy. For a theoretical comparative analysis of the limited measurement results, the response amplitude operator (RAO) was analyzed through frequency-response analysis by numerical simulation, and acceleration analysis for the four points was performed using the RAO results. Based on the acceleration comparison, differences in the degree of each position were observed, but in the case of the Y-axis acceleration, the analysis was 1.81 m/s2, and the measurement was 1.47 m/s2. The analyzed simulation result was as high as 0.34 m/s2. Moreover, analysis was performed at 22 % level, and measurement at 18 % level.

A Study on Safety and Performance Evaluation to Shaver Type Rope Cutter for Ships (선박용 Shaver Type 로프절단장치의 안전성 및 성능평가에 관한 연구)

  • Kang, Sung-Hoon;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.632-638
    • /
    • 2022
  • As Korean coastal activity is high, the incidence of accidents caused by marine waste is extensive. An accident in which marine floating waste ropes and fishing nets are wound around the propeller of a sailing ship is termed "Rope wrapped accident." To prevent such accidents, this study applied the Finite Element Method (F.E.M.) for performance evaluation of the shaver type cutter, commercialized in Korea, through a structural safety review and water tank test. The results demonstrate that all parts constituting the rope cutter were damaged before reaching 0.5s, and the safety factor of each part was found to be at least 2 based on the maximum stress generated compared to the tensile strength. In the basin test, the cutting process of the shaver type rope cutter was reviewed, and the installation angle was set for each case considering that the rope floating in the sea actually enters at various angles. Consequently, as it was successful at cutting in all the cases, it can be concluded that there will be no problem in cutting the rope regardless of the mounted angle of the cutting blade.

A Study on Speed Limit Rules under Sailing Regulations - Focusing on the Perspective of VTS Control - (항법상 속력의 제한규칙에 관한 고찰 - VTS의 관제 관점에서 -)

  • Chong, Dae-Yul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.254-261
    • /
    • 2022
  • Every vessel shall proceed at a safe speed to avoid collision. Additionally, every vessel shall comply with the speed limit rules in the territorial water and internal waters of Korea. The VTS operator shall properly control the compliance of the vessel with the safe speed and speed limit rules. Safe speed under the COLREG 1972 is not explicitly stipulated in knots. However, under the Domestic law for traffic safety-specific sea areas, etc., the speed limit is specified in knots and complied with. This speed limit rule is mainly based on the 'speed made good over the ground'; however, in some places, it is based on the 'speed making way through the water'. In this paper, I analyzed marine accidents that occurred in the past 5 years and the rate of violation of speed limits. Furthermore, I reviewed safe speed under the COLREG 1972, speed limit rules under domestic and foreign laws, and cases of non-compliance with safe speed in the judgment of the Korea Maritime Safety Tribunal. Resultantly, I suggested in this paper that the speed limit rules in the domestic law must be observed by vessels to prevent marine accidents, and the rules which are stipulated in terms of 'speed making way through the water' must be revised as 'speed made good over the ground' such that the vessels can easily comply with them and the VTS operator can control the vessel properly.

The Quantitative Analysis on the Criterion Elements for Collision Avoidance Action in Collision Avoidance maneuver and Its Application (피항조선시의 피항개시기준요소의 양적파악 및 그 이용에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • The Steering and Sailing Rules of International Regulation for Preventing Collisions at Sea now in use direct actions to avoid collision when two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve risk of collision. But these rules do not refer to the minimum relative distances and safety relative distances between two vessels when they should take such actions.In this paper the ship's collision avoiding actions being analyzed from a viewpoint of ship motions, the mathematical formulas to calculate such relative distances necessary for taking actions to avoid collision were worked out. The values of maneuvering indices being figured out through experiments of 20 actual ships of small, medium, large and mammoth size and applied to calculating formulas, the minimum relative distances and safety relative distances were calculated. The main results were as follows. 1. It was confirmed that the criterion elements for collision avoiding actions in head-on situation of two vessels shall be the minimum relative distances and safety relative distances between them. 2. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the minimum relative distance of small vessel(GT : 160~650tons) was found to be about 4.7 times her own length, and those of medium (GT:2,300~4,500tons),large(GT:15,000~62,000tons) and mommoth (GT:91,000~194,000tons) vessels were found to be about 5.2 times, about 5.2 times and about 6.1 times their own lengths respectively. 3. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the safe relative distance of small vessel (GT : 160~650tons) was found to be about 6.8 times her own length, and those of medium (GT : 2,300~4,500tons), large (GT: 15,000~62,000tons) and mammoth (GT : 91,000~194,000tons) vessels were found to be about 9.0 times, about 6.3 times, and about 8.0 times their own lengths respectively. 4. It is considered to be helpful for the safety of ship handling that the sufficient safe relative distances for every vessels shall be more than about 12~14 times which are 2 times minimum relative distance, their own length on above assumption.

  • PDF

Method for Improving the Safety of the Bargemen (부선 승선 선두의 안전성 제고를 위한 제언)

  • Yang, Jinyoung;Kim, Chuhyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.946-954
    • /
    • 2022
  • More than half of barges have been surveyed and designated as an "unmanned barge". The main advantage of the unmanned barge is that it can carry more cargo equivalent to 25 percent of freeboard compared to that of a manned barge. In contrast, it needs an onboard crew barge because the bargeman is in charge of several tasks during sailing such as mooring or unmooring barges to or from a wharf, dropping and heaving up an anchor and turning on and of navigational lights and shapes. The instant recognition is that a tug assume the responsibility of operating a barge; however, different situations exist in which the shipper, as the operator of the barge, hires a tug. Although a tug might be a carrier of a barge under a specific contract, the master of the tug should fulfill his duty to complete its voyage. Most masters are not provided with the particulars of a barge and the information regarding the bargemen onboard, which is believed not to respect the master's authority and lead to an unintended violation of relevant laws. This paper presents three recommendations for resolving these issues: the policy approach for changing unmanned barges to manned barges, issuing a minimum safe manning certificate, and providing the master of tug information on the barge and the crew onboard. Thus, the proposed approach can be expected to improve the crew's working conditions, diminish the violation of the maximum number of persons onboard the barge, and ensure the authority of the master of tug through such recommendations.

A Study on the Traffic Stream and Navigational Characteristics at the Adjacent Sea Area of Busan Central Wharf (부산 중앙부두 주변해역의 교통흐름 및 통항특성에 관한 연구)

  • Kim Se-Won;Lee Yun-Sok;Park Young-Soo;Kim Jong-Sung;Yun Gwi-Ho;Kim Dae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.9-15
    • /
    • 2006
  • At the adjacent sea area of Busan Central Wharf, a variety of vessels, such as middle-large passenger ships, small hugh speed crafts, container ships, cargo ships and working boats as well as small miscellaneous vessels are freely sailing comparatively without special rules and marine traffic control. In this research, we analyzed traffic stream and navigational characteristics cf main traffic route based on statistics and distribution of tracks by ship's type and tonnage cf the passing vessels after conducting marine traffic survey twice using exclusive software. We examined the traffic safety of the passing vessels by classifying the sea area by each function based on the analysis about this traffic situation, and analyzing the effect by designating 'Inner passage'. We also studied the plan for the effective rearrangement cf Central Wharf considering basically the traffic safety of arrival and departure in a point of view of navigators.