• Title/Summary/Keyword: Saga

Search Result 324, Processing Time 0.029 seconds

1D deformation induced permeability and microstructural anisotropy of Ariake clays

  • Chai, Jinchun;Jia, Rui;Nie, Jixiang;Aiga, Kosuke;Negami, Takehito;Hino, Takenori
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-95
    • /
    • 2015
  • The permeability behavior of Ariake clays has been investigated by constant rate of strain (CRS) consolidation tests with vertical or radial drainage. Three types of Ariake clays, namely undisturbed Ariake clay samples from the Saga plain, Japan (aged Ariake clay), clay deposit in shallow seabed of the Ariake Sea (young Ariake clay) and reconstituted Ariake clay samples using the soil sampled from the Saga plain, were tested. The test results indicate that the deduced permeability in the horizontal direction ($k_h$) is generally larger than that in the vertical direction ($k_v$). Under odometer condition, the permeability ratio ($k_h/k_v$) increases with the vertical strain. It is also found that the development of the permeability anisotropy is influenced by the inter-particle bonds and clay content of the sample. The aged Ariake clay has stronger initial inter-particle bonds than the young and reconstituted Ariake clays, resulting in slower increase of $k_h/k_v$ with the vertical strain. The young Ariake clay has higher clay content than the reconstituted Ariake clay, resulting in higher values of $k_h/k_v$. The microstructure of the samples before and after the consolidation test has been examined qualitatively by scanning electron microscopy (SEM) image and semi-quantitatively by mercury intrusion porosimetry (MIP) tests. The SEM images indicate that there are more cut edges of platy clay particles on a vertical plane (with respect to the deposition direction) and there are more faces of platy clay particles on a horizontal plane. This tendency increases with the increase of one-dimensional (1D) deformation. MIP test results show that using a sample with a larger vertical surface area has a larger cumulative intruded pore volume, i.e., mercury can be intruded into the sample more easily from the horizontal direction (vertical plane) under the same pressure. Therefore, the permeability anisotropy of Ariake clays is the result of the anisotropic microstructure of the clay samples.

Obstacle Avoidance of Quadruped Robots with Consideration to the Order of Swing Leg

  • Yamaguchi, Tomohiro;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.645-650
    • /
    • 2003
  • Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).

  • PDF

A study on preventing the fall of skew and curved bridge decks by using rubber bearings

  • Ijima, Katsushi;Obiya, Hiroyuki;Aramaki, Gunji;Kawasaki, Noriaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.347-362
    • /
    • 2001
  • The paper deals with preventing the collapse of by the means of supporting the bridges by rubber bearings and pedeck structures of skew and curved bridges during earthquakes, rmitting pounding between the decks and the abutments. Seismic response during pounding is characterized by various phenomena, such as the caging of bridge decks between abutments during an earthquake or decks popping out. These behaviors depend on only a small difference in seismic intensity. Regarding the global characteristics of a seismic response, smaller clearance between a deck and its abutments results in smaller impact damage of the abutments as well as lesser deformation of the rubber bearings. Similarly, smaller clearance between a deck and the side blocks results in smaller damage. The stiffnesses of the bearings and the stiffness ratio between them control the deck displacement. In short to medium length bridges, zero clearance between a deck and the abutments or the deck and the side blocks is the most effective way in preventing the deck from falling and limits the damage to the abutments or the side blocks.

A Novel Hybrid Supercapacitor Using a Graphite Cathode and a Niobium(V) Oxide Anode

  • Park, Gum-Jae;Kalpana, D.;Thapa, Arjun Kumar;Nakamura, Hiroyoshi;Lee, Yun-Sung;Yoshio, Masaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.817-820
    • /
    • 2009
  • To meet the high current load requirement from the high energy density realized by metal oxide and high power density graphite, we propose a novel hybrid supercapacitor consisting of Nb2O5 and KS6 graphite in 1.0 M LiPF6-EC:DEC (1:2). This new system exhibits a sloping voltage profile from 2.7 to 3.5 V during charging and presents a high operating voltage plateau between 1.5 and 3.5 V during discharging. The cell was tested at a current density of 100 mA/g with a cut-off voltage between 3.0 and 1.0 V. This novel energy storage system delivers the highest initial discharge capacity of 55 mAh/g and exhibits a good cycle performance.