• Title/Summary/Keyword: Safety-related Structure

Search Result 448, Processing Time 0.027 seconds

A Descriptive Analysis of Project Participants' Perception about Complaint in Public Construction Projects

  • Lee, Changjun;Lee, Ju-Hui;Yun, Sungmin;Han, Seung Heon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.111-118
    • /
    • 2022
  • Conflicts in public construction projects become more serious and complex so that they have a negative effect on performance of projecets. Conflicts in public construction projects are defined as expanding in complaints. This study analyzes the relationship structure and effect on performance between complaints and conflicts. First of all, 219 survey data collected from industry experts were used to derive complaints arising from the project and to understand the characteristics of each complaint. In the case of environmental damages, rather than environmental damage during construction, harmful substances or effects that can occur in completed facilities cause complaints from local residents, and opposition from environmental groups has a great effect on time and cost increase. As for safety damage, civil complaints related to prevention and countermeasures for safety accidents occur frequently, and additional construction affects cost increases. Through this study, it is possible to understand the serious complaints that are prone to conflict in public construction projects, their frequency, and the performance of the project.

  • PDF

A Study of the Comparison of Cognition between Seafarer and Shipping Operations Manager on Human Factors of Ship Accident (선박사고의 인적요인에 대한 선원과 운항관리자 간의 인식 비교에 관한 연구)

  • Kim, Dae-hyeon;Park, Ho;Kim, Sang-youl
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.105-124
    • /
    • 2018
  • The purpose of this study is to identify human factors that directly or indirectly cause ship accidents and to suggest implications based on the derived human factors. In particular, we conducted a survey on the basis of the human factors derived from the literature survey and interviews, and applied the revised importance-performance analysis (IPA) to develop implications from a comparison of two groups: seafarers and shipping operations managers. Data were collected from 159 practitioners in the Korean shipping industry. The analysis structure consisted of five major factors with 20 components, including unique factors related to ship and shipping management companies, personal competence, in-vessel organization, and personnel's health, as well as social factors. The result of the IPA analysis indicates that in-vessel organization is the most urgent and major factor for improvement. Some differences exist in the components that should be improved between the two groups. For the seafarer group, an increase in unskilled onboard crew affected sustainable safety activities, thus implying an area of preferential improvement regarding the in-vessel organization factor. However, for the shipping operations managers group, the difference in recognizing safety standards among the crew members on board and the ability to communicate with other crew members should be improved first relative to in-vessel organization factors. The personnel's health factor was identified to be of low importance in both groups. Finally, the importance of improving the safety consciousness level according to the safety education and training implementation for seafarers on board was different for the two groups.

The Standard Thesis of Objectivity Condition Evaluation for Infrastructure(Retaining Walls) (옹벽 시설물의 객관적인 상태평가 기준정립)

  • 이종영;신창건;장범수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.3.1-11
    • /
    • 2003
  • Recently the problems related to the failure of the retaining wall structure has become great concern since the damage to the properties and human losses have occurred in the rainy season. However, a detail guideline on safety inspection and appropriate diagnosis on the retaining wall structure have not yet proposed and therefore, the inspection process and results are mainly dependant upon the engineers. The objective of this study is to propose objective and quantitative evaluation method for the condition based on the damage shapes and material types. In this purpose, composing materials of retaining wall are divided Into concrete, gabion, stone and reinforced earth, and then the evaluation items and method are suggested on the basis of the materials and structural characteristics of the retaining wall.

  • PDF

Design of a New Capsule Controlling Neutron Flux and Fluence and Temperature of lest Specimen

  • Choo, Kee-Nam;Kang, Young-Hwan;Taiji Hoshiya;Motoji Niimi;Takashi Saito
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.148-157
    • /
    • 1997
  • A new capsule that has a unique structure in which the test environments including neutron flux and fluence, and irradiation temperature can be controlled precisely during irradiation, was conceptually designed. The capsule structure and instrumentation were successfully designed according to the JMTR's standard procedures of capsule design. Based on the target irradiation, the details of the irradiation such as neutron fluence and irradiation temperature ore calculated and the related capsule safety was evaluated. In addition, the effects of design parameters including the changes in inner-capsule configuration, heater capacity, and Helium gas pressure on the specimen temperature were analyzed with a computer program. Through these thermal and strength evaluations, this capsule was proved to be safe during the irradiation in the JMTR.

  • PDF

Decision of SSI Network dimension for Safety based ODLM(LDT) installation (안전성 기반 ODLM(LDT) 설치를 위한 SSI 네트워크 규모 결정)

  • Min, Geun-Hong;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.797-802
    • /
    • 2008
  • High Speed Rail Train Control System consists of CTC, IXL and ATC. IXL and ATC perform train control and command via interchanging relevant information between a signal room and CTC. However, it is proved that IXL and ATC are attributed to train delay error since those systems are highly sensitive to trackside conditions. Especially, network error on IXL blocks transmitting signal information to adjacent signal room so that its effects give rise to system overall problems. In order to figure out the measures for which minimizing the occurrence rate of train delay error due to HSR TCS, This paper is performed analysis on communication network structure, the length of SSI network roof and SSI-TFM distance by examining and analyzing the error cases related to IXL in a network aspect.

A Study on Life Assessment for Urban Transit Structure (도시철도차량 구조체의 수명평가에 관한 연구)

  • Chung J.D.;Chun H.J.;Han S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.115-116
    • /
    • 2006
  • In these days, almost urban railway vehicle has been serviced under the random load application. But it is very important that fatigue lift prediction fur structures is major factor of safety. So do this, it is required that fatigue assessment method for cumulative damage approach while Korea domestic regulations only has endurance limit approach. With this endurance limit approach, fatigue lift prediction is impossible. In this research, it will be present that fatigue assessment for urban transit structure by using of cumulative damage approach method and related theories.

  • PDF

A Study on System Structure and GUI Implement for Secure ESS use (안전한 ESS 사용을 위한 System 구조와 GUI 구현에 관한 연구)

  • Kim, Wantae;Kim, Hyunsik;Park, Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.11-17
    • /
    • 2019
  • As interest in the efficiency use of energy has been recently rising, studies have been performed in utilizing various types of eco-friendly green energy and natural energy. Especially there has been rapidly increase in the fields using ESS (Energy Storage System), which is the technology for storing the energy from nature. The application fields of ESS is continuously growing and expanding to various types of technologies. However, in recent years there have been continuing problems with the safety of ESS. And related researches are going on. In this paper, we has proposed a system structure to utilize more secure ESS and has monitored the system status of ESS in real time by using smart phone app. This paper has also proposed a new method to configure secure ESS by implementing GUI (Graphical User Interface) to control the system. And then explain experimental results to investigate the efficiency of the proposed ESS.

Study on Structure Design of High-Stiffness for 5 - Axis Machining Center (5축 공작기계의 고강성 구조설계에 관한 연구)

  • Hong, Jong-Pil;Gong, Byeong-Chae;Choi, Sung-Dae;Choi, Hyun-Jin;Lee, Dal-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • This study covers the optimum design of the 5-axis machine tool. In addition, the intelligent control secures structural stability through the optimum design of the structure of the 5-axis machine center, main spindle, and the tilting index table. The big requirement, like above, ultimately leads to speed-up operation. And this is inevitable to understand the vibration phenomenon and its related mechanical phenomenon in terms of productivity and its accuracy. In general, the productivity is correlated with the operation speed and it has become bigger by its vibration scale and the operation speed so far. Vibration phenomenon and its heat-transformation of the machine is naturally occurred during the operation. If these entire machinery phenomenons are interpreted through the constructive understanding and the interpretation of the naturally produced vibration and heat-transformation, it would be very useful to improve the rapidity and its stability of the machine operation indeed. In this dissertation, the problems of structure through heating, stability, dynamic aspect and safety about intelligent 5-wheel machine tool are discovered to examine. All these discoveries are applied to the structure in order to enhance the density of it. It aims to improve the stability.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.