• Title/Summary/Keyword: Safety-net

Search Result 1,474, Processing Time 0.04 seconds

FAST (floating absorber for safety at transient) for the improved safety of sodium-cooled burner fast reactors

  • Kim, Chihyung;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1747-1755
    • /
    • 2021
  • This paper presents floating absorber for safety at transient (FAST) which is a passive safety device for sodium-cooled fast reactors with a positive coolant temperature coefficient. Working principle of the FAST makes it possible to insert negative reactivity passively in case of temperature rise or voiding of coolant. Behaviors of the FAST in conventional oxide fuel-loaded and metallic fuel-loaded SFRs are investigated assuming anticipated transients without scram (ATWS) scenarios. Unprotected loss of flow (ULOF), unprotected loss of heat sink (ULOHS), unprotected transient overpower (UTOP) and unprotected chilled inlet temperature (UCIT) scenarios are simulated at end of life (EOL) conditions of the oxide and the metallic SFR cores, and performance of the FAST to improve the reactor safety is analyzed in terms of reactivity feedback components, reactor power and maximum temperatures of fuel and coolant. It is shown that FAST is able to improve the safety margin of conventional burner-type SFRs during ULOF, ULOHS, UTOP and UCIT.

Correlation between events with different safety significance in nuclear power plants

  • Simic, Zdenko;Veira, Miguel Peinador;Banov, Reni
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2510-2518
    • /
    • 2022
  • The main purpose of collecting and analyzing operating experience events is to look for insights to improve safety. The underlying assumption is the correlation and causality between events with different safety significances. The analysis of this assumption could be valuable to optimize operating experience feedback programs and to enhance safety. This paper analyses the correlation between events with different safety significances. Groups of events from six nuclear energy related databases are considered. The findings are that a correlation exists but with various levels and not as large or consistent as might be expected across different databases. These results might be the basis for further work to analysis causality, to find out how a similarity in causes influences the correlation, and finally to improve the operating experience program.

Possibility of Fishery in Offshore Wind Farms (해상풍력발전단지 내 어업 가능성에 관한 고찰)

  • Jung, Cho-Young;Hwang, Bo-Kyu;Kim, Sung-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.535-541
    • /
    • 2019
  • The purpose of this study was to investigate the possibility of fishery in offshore wind farms and evaluate the risk linked to the presence of turbines and submarine cables in these areas. With this objective, we studied an offshore wind farm in the Southwest Sea and the current state of vessels in the surrounding National Fishing Port. The risk assessment criteria for 22 fishing gears and methods were set by referring to the fishing boats; thereafter, the risk was assessed by experts. The fishing gears and methods that could be safely operated (i.e., associated with low risk) in the offshore wind farm were: single-line fishing, jigging, and the anchovy lift net. The risk was normal so that it is possible to operate, but the fishing gears and methods that need attention are: the set long line, drifting long line, troll line, squid rip hook, octopus pot, webfoot octopus pot, coastal fish pot, stow net on stake, winged stow net, stationary gill net, and drift gill net. Moreover, the fishing gears and methods difficult to operate in the of shore wind farm (i.e., associated with high risk) were: the dredge, beam trawl, and purse seine. Finally, those associated with very high risk and that should not be allowed in offshore wind farms were: the stow net, anchovy drag net, otter trawl, Danish seine, and bottom pair trawl.

A Comparative Study of Sea Trials and Production Processes for Propulsion Type Working Boats with a Tuna Purse Seiner (다랑어 선망어선 탑재용 보조 작업선의 추진기 형태 변화에 대한 제작과정 및 해상시운전 비교 연구)

  • Ha, Seoung-Mu;Jang, Ho-Yun;Seo, Hyoung-Seock;Seo, Kwan-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.595-602
    • /
    • 2017
  • In Korea, much research and development have occurred to enhance the technological competitiveness of tuna purse seining fisheries. Due to these efforts, fishing efficiency has been improved with the development of radar, sonar and global positioning systems for fish detection and revisions to the hull forms of tuna purse seiners. However, for skiff boats, net boats and speed boats, which are auxiliary working boats mounted on tuna purse seiners, technology has lagged behind relative to the modernization of the main vessel. In this study, the hull of an existing propeller-based net boat with steel wire net to protect tuna was changed to the hull of a water jet propulsion vehicle to reduce resistance and improve maneuverability. As a result, a prototype of a water jet propulsion option was produced according to the aluminum structure strength standards specified by the Ministry of Oceans and Fisheries, and safety was confirmed by performing a drop test. Moreover, through a sea trial test, an existing net boat was shown to have a speed of 12.0knots and a towing force of 2,545 kgf at 2,500 RPM. The prototype had a speed of 26.7 knots and a towing force of 2,011 kgf at 3,200 RPM, which satisfied the towing capacity standards of auxiliary working boats mounted on tuna purse seiners.

Transfer learning for crack detection in concrete structures: Evaluation of four models

  • Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.163-175
    • /
    • 2024
  • The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.

Analysis on underwater stability of the jellyfish sting protection net installed in the Haeundae beach (해운대 해수욕장에 설치된 해파리 차단망의 수중 안정성 분석)

  • Park, Seongwook;Lee, Donggil;Yang, Yongsu;Lee, Hyungbeen;Lee, Kyounghoon;Hahn, Minsoo;Lee, Taewha
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • The worldwide abundance of various jellyfish appears to have increased in coastal ecosystems in recent years. The enormous jellyfish blooms cause a variety of problems for the local ecology, fisheries, and aquatic-sports in coastal locations. In this study, jellyfish sting protection net was installed to ensure the safety and reduction of the inflow into the Haeundae beach. In order to confirm the stability of the protection net, the tension for protection net was measured from variation of current speed. The periods for maximum tension were observed correspond to the periods of maximum current speed. The maximum tension for protection net was measured up to 4,100 kg. From field evaluations, the jellyfish sting protection net has demonstrated to stability from the current and tide in the Haeundae beach.

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

DYNAMIC CHARACTERISTICS OF CYLINDRICAL SHELLS CONSIDERING FLUID-STRUCTURE INTERACTION

  • Jhung, Myung-Jo;Kim, Wal-Tae;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1333-1346
    • /
    • 2009
  • To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect.

PX-An Innovative Safety Concept for an Unmanned Reactor

  • Yi, Sung-Jae;Song, Chul-Hwa;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.268-273
    • /
    • 2016
  • An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

A Model for Efficient Construction Safety System (건설업 안전경영시스템모델 개발)

  • 채준석;갈원모;손기상
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.2
    • /
    • pp.73-89
    • /
    • 2001
  • Safety management cost, US$ one thousand billion has been input to the construction area from 1995 to 2000 but the management quality is still in the developing country level. The above mentioned increase of accident rate are attributed to the generous code regulation, net fit to the sense, varying with time change, but the more fundamental reason of this is no practical construction safety management system, up to now. Hardware-orienting operation for the system could be a main reason of this problem. In this paper, we developed a model for efficent construction safety system. It was found from the case study that the model result in high efficient with low cost.

  • PDF