• Title/Summary/Keyword: Safety-critical System

Search Result 876, Processing Time 0.028 seconds

Development of a structure analytic hierarchy approach for the evaluation of the physical protection system effectiveness

  • Zou, Bowen;Wang, Wenlin;Liu, Jian;Yan, Zhenyu;Liu, Gaojun;Wang, Jun;Wei, Guanxiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1661-1668
    • /
    • 2020
  • A physical protection system (PPS) is used for the protection of critical facilities. This paper proposes a structure analytic hierarchy approach (SAHA) for the hierarchical evaluation of the PPS effectiveness in critical infrastructure. SAHA is based on the traditional analysis methods "estimate of adversary sequence interruption, EASI". A community algorithm is used in the building of the SAHA model. SAHA is applied to cluster the associated protection elements for the topological design of complicated PPS with graphical vertexes equivalent to protection elements.

Development of RCM Framework for Implementation on Safety Systems of Nuclear Power Plant

  • Kim, Tae-Woon;Brijendra Singh;Park, Chang K.;Chang, Tae-Whee;Song, Jin-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.631-636
    • /
    • 1996
  • This paper presents a Reliability Centered Maintenance (RCM) framework for implementation on safety system of nuclear power plant (NPP). RCM is a systematic methodology to optimize the surveillance and maintenance tasks for critical components which provides efficiently and effectively reliability of system and safety of plant. Maintenance of the safety systems is essential for its safe and reliable operation. Reliability Centered Maintenance at NPP is the program which assure that plant system remains within original design criteria and that is not adversely affected during the plant life time. Aim of this paper is to provide the RCM framework to implement it on safety systems. RCM framework is described in four major steps.

  • PDF

A study on the statistical analysis and implications cases of obtaining international safety certification in safety critical railway products (안전성 중시 철도제품의 국제인증 획득 사례를 통한 통계적 분석 및 시사점에 관한 연구)

  • Choi, Yo Chul
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.114-121
    • /
    • 2021
  • Today, it is a time when self-help efforts are being made to increase the demand for international certification by domestic and foreign railway orderers and develop excellent railway systems for railway system and railway construction projects. Since 2011, cases of obtaining international certification related to the domestic railway system/products have been collected and analyzed through literature and Internet data and based on the analysis results, evaluation results on the acquisition of international certification in Korea are presented. Through these results, the government, research institutes, and industries will be practical reference materials for international certification-related work.

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

A Systematic Method for Analyzing Human Factors-Related Accidents to Improve Aviation Safety in the Air Force (공군의 항공안전 향상을 위한 인적요소 관련 사고의 체계적 분석 기법)

  • Lim, Chea-Song;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Aviation safety is increasingly important to secure the safety of the Republic of Korea Air Force (ROKAF). A critical activity for enhancing aviation safety is to analyze an accident throughly and to identify causes that can explain it reasonably. The results of such a systematic accident investigation can be effectively used for improving information displays, task procedures, and training systems as well as for reorganizing team structure and communication control system. However, the current practice of analyzing aviation accidents in ROKAF is too superficial and simple to diagnose them systematically. Additionally, the current practice does not give a full consideration to human factors that have been identified as main causes of most of the aviation accidents. With this issue in mind, this study aims to suggest a new approach to analyzing aviation accidents related to human factors.The proposed method is developed on the basis of several models and frameworks about system safety, human error, and human-system interaction. Its application to forty-two human factors-related accidents, which have occurred in ROKAF during the last ten years, showed that the proposed method could be a useful tool for analyzing aviation accidents caused by human factors.

Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerodynamic coefficients considering aerodynamic interference

  • Han, Wanshui;Liu, Huanju;Wu, Jun;Yuan, Yangguang;Chen, Airong
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.405-430
    • /
    • 2017
  • The aerodynamic characteristics of vehicles are critical to assess vehicle safety and passenger comfort for vehicles running on long span bridges in a windy environment. However, in previous wind-vehicle-bridge (WVB) system analysis, the aerodynamic interference between the vehicle and the bridge was seldom considered, which will result in changing aerodynamic coefficients. In this study, the aerodynamic coefficients of a high-sided truck on the ground (ground case) and a typical bridge deck (bridge deck case) are determined in a wind tunnel. The effects of existent structures including the bridge deck and bridge accessories on the high-sided vehicle's aerodynamic characteristics are investigated. A three-dimensional analytical framework of a fully coupled WVB system is then established based on the finite element method. By inputting the aerodynamic coefficients of both cases into the WVB system separately, the vehicle safety and passenger comfort are assessed, and the critical accidental wind speed for the truck on the bridge in a windy environment is derived. The differences in the bridge response between the windward case and the leeward case are also compared. The results show that the bridge deck and the accessories play a positive role in ensuring vehicle safety and improving passenger comfort, and the influence of aerodynamic interference on the response of the bridge is weak.

A Study on the Safety Management and Risk Assessment of the Certification Flight Test (인증비행시험 안전관리 및 위험도 평가기법 연구)

  • Choi, Joo-Won
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • Certification flight test is very risky and there are many hazards. Because the flight test is performed with the aircraft, that is safety and flight characteristics are not proven. And the test items and conditions are critical. If there is loss of aircraft during certification flight test, the certification program, development period can be delayed. Therefore, maintaining safety of the aircraft during flight test is very important. There are not much flight test experiences in Korea. However, developed nations has long history of flight test and experiences of flight test accidents. Based on these experiences, they has developed systematic management methods for the flight test safety. In this study, I would like to introduce safety management and risk assessment of the certification flight test.

Formal Software Requirements Specification for Digital Reactor Protection Systems (디지털 원자로 보호 시스템을 위한 정형 소프트웨어 요구사항 명세)

  • 유준범;차성덕;김창회;오윤주
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.750-759
    • /
    • 2004
  • The software of the nuclear power plant digital control system is a safety-critical system where many techniques must be applied to it in order to preserve safety in the whole system. Formal specifications especially allow the system to be clearly and completely specified in the early requirements specification phase therefore making it a trusted method for increasing safety. In this paper, we discuss the NuSCR, which is a qualified formal specification method for specifying nuclear power plant digital control system software requirements. To investigate the application of NuSCR, we introduce the experience of using NuSCR in formally specifying the plant protection system's software requirements, which is presently being developed at KNICS. Case study that shows that the formal specification approach NuSCR is very much qualified and specialized for the nuclear domain is also shown.

Design and Implementation of Road Construction Risk Management System based on LPWA and Bluetooth Beacon

  • Lee, Seung-Soo;Kim, Yun-cheol;Jee, Sung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.145-151
    • /
    • 2018
  • While commercialization of IoT technologies in the safety management sector is being promoted in terms of industrial safety of large indoor businesses, implementing a system for risk management of small outdoor work sites with frequent site movements is not actively implemented. In this paper, we propose an efficient dynamic workload balancing strategy which combined low-power, wide-bandwidth (LPWA) communication and low-power Bluetooth (BLE) communication technologies to support customized risk management alarm systems for each individual (driver/operator/manager). This study was designed to enable long-term low-power collection and transmission of traffic information in outdoor environment, as well as to implement an integrated real-time safety management system that notifies a whole field worker who does not carry a separate smart device in advance. Performance assessments of the system, including risk alerts to drivers and workers via Bluetooth communication, the speed at which critical text messages are received, and the operation of warning/lighting lamps are all well suited to field application.

A Study on The Necessity of Establishing an IT-Based Local Government Safety and Health Management Information Integration System (IT 기반 지자체 안전보건 관리 정보 통합 시스템 구축 필요성에 관한 연구)

  • Seo-Yeon Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.701-708
    • /
    • 2023
  • Local governments are required to take measures to prevent occupational accidents under Articles 4(2) and 4(3) of the Occupational Safety and Health Act, and this study suggested the necessity of establishing an IT-based integrated safety and health information sharing system for serious accident reduction and safety and health management through the case of Incheon Metropolitan City. Recently, as local governments have established labor and health ordinances and basic plans, the need for an independent integrated safety and health management system based on local industrial characteristics has increased. It is necessary to establish a cooperation and support system with basic local governments and hub institutions, share integrated safety and health information with related institutions and organizations, and play a pivotal role in regional safety and health management by managing occupational accident statistics and implementing basic policies. The system through local governments' safety and health management will reduce serious accidents in the region, and the comprehensive safety and health management system for small businesses and projects ordered by local governments will strengthen the operability of the site, which will be effective in preventing critical accidents and industrial accidents.