• Title/Summary/Keyword: Safety wheel

Search Result 444, Processing Time 0.028 seconds

A Study of the Endurance Severity for Automobile Wheel Safety Standard Revision (자동차 휠 안전기준 개정 대응을 위한 내구 가혹도 검토)

  • Jang, JinHee;Heo, SungPil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.30-34
    • /
    • 2022
  • The CFT(Cornering Fatigue test) and RFT(Radial Fatigue Test) are tests for evaluating the endurance of the disc and rim region of the wheel. In recent, automobile wheel safety standards have been revised and the applied load and target life criteria are different from existing conditions. The verification evaluation of all wheels requires a lot of time and cost. In this study, the endurance severity of each test was compared through strain-life approach by selecting 4 steel and 8 aluminum wheels.

Finite Element Analysis of Wheel-set for Derailment Coefficient Measurement that have Plane Plate Shape (평면 플레이트 형상을 가진 탈선계수 측정용 윤축의 구조해석)

  • 함영삼;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.119-122
    • /
    • 2004
  • Since a derailment of rolling stocks results in huge losses in properties and lives, the measurement of a derailment coefficient is a very important test item to estimate the running safety of rolling stocks. For a measurement of the derailment measurement of forces between the wheel and rail a measuring wheel-set should be made first. The process to make a measuring wheel-set has some stages for correct measurement. They are as follows; a finite element analysis of a wheel to find a position of holes at which vertical force shall be measured, a finite element analysis for the position of strain gauges.

  • PDF

Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis (유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter (휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정)

  • Myeonggeun, Jun;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

Evaluation of Running Safety for Depressed Center Flat Car of 3-axle Bogie (3-축 대차 곡형평판차량의 주행안전성 평가)

  • Ham, Young-Sam;Seo, Jung-Won;Kwon, Seok-Jin;Lee, Dong-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2011
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 90km/h for estimating the curving performance and running safety of depressed center flat car of 3-axle bogie. As the test results, could confirm the curving performance and running safety of depressed center fiat car of 3-axle bogie from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.6, and lateral force allowance limit and wheel load reduction ratio were enough safe.

Estimation of Curving Performance and Running Safety of Gwangju Electric Multiple Unit for City Subway (광주도시철도 전동차의 곡선추종성 및 주행안전성 평가)

  • Ham, Young-Sam;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.745-750
    • /
    • 2004
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, wheelset manufacturing for test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 80km/h for estimating the curving performance and running safety of Gwangju EMU. As the test results, could confirm the curving performance and running safety of Gwangju EMU from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.8, and lateral force allowance limit and wheel load reduction ratio were enough safe.

  • PDF

Analysis on Running Safety for KTX Vehicle (KTX차량의 주행 안전성 해석)

  • Kim, Jae-Chul;Ham, Young-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.473-479
    • /
    • 2007
  • Lateral vibration at the tail of KTX train was found during the acceptance test. In order to settle the problem of lateral vibration, the wheel conicity was changed 1/40 to 1/20. However, we should evaluate the running safety of vehicle with 1/20 wheel conicity because modification of wheel conicity may cause the running performance to be worse and critical speed to reduce. In this paper, we calculate critical speed of KTX bogie as wheel conicity increase and analyze the running safety for KTX that has 20 car trainset formation using VAMPIRE. and compare with the test results of KHST to validate analysis results on high speed line. A analysis results show that critical speed of 0.3 wheel conicity is over 375km/h and curving performance of 1/20wheel conicity is better than 1/40. Also, we examinate the running performance of KTX to check out possibility to increase speed of KTX on conventional line. A analysis results show that it is possible to increase up to 10% the speed of KTX on tangent line but KTX on a curved line should be operated with the speed of conventional train.

A Safety Assessment and Vibration Characteristics of Railway Vehicle Passing Curves (곡선부 통과 차량의 진동특성 및 안전성 평가)

  • Park, Kwang-Soo;Lee, Seung-Il;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.993-1001
    • /
    • 2007
  • An analysis model has been developed to assess running safety of railway vehicle passing curves. By using ADAMS/Rail, a computer analysis has been conducted by changing various parameters according to the track conditions. Analysis results show as follows: A derailment coefficient of left wheel was increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A unload rate of left wheel was also increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A wear number of left wheel was increased according to increase of cant at all speed, but only at 35 m/s, it was decreased as increase of cant. A friction coefficient of left wheel was Increased according to increase of cant at all speed, but only at 35 m/s. it was decreased as increase of cant.

A Study on Acceleration Performances of EMUs According to Wheel Diameter Changes (전동차 차륜직경변화가 가속성능에 미치는 영향 연구)

  • Min, Seung Kon;Ko, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.92-99
    • /
    • 2015
  • The diameter of a new wheel in EMUs is 860mm and it can be used up to 773mm. To obtain an predefined acceleration despite wheel diameter changes, the tractive efforts of the vehicles must be properly controlled. In the commencement of this study, acceleration tests were performed for empty EMUs when the wheel diameter was changed to 860mm, 820mm and 780mm, respectively. In order to deal with more complicated running conditions, we developed dynamic simulation models of the EMUs using VI-Rail, and simulated the models in empty and full passenger loads, respectively. Using the simulation results, we analyzed the gradient of time-velocity graphs by considering the changes of the total weight vehicles and moment of inertia of the wheelsets as well as tractive effort according to the wheel diameter changes. As the results, it was found that there are significant differences in acceleration performances according to the wheel diameters and the payloads of EMUs. In case of 860mm which is the maximum wheel diameter, the test & simulation results show that the vehicle couldn't reach the predefined acceleration, 3.0km/h/s, due to lack of tractive effort.

An Experimental Study of Optimal Performance of Rear Wheel Steering Vehicle for Maneuverability (기동성을 위한 후륜 조향 차량의 최적 성능에 대한 연구)

  • Ann, Kookjin;Joa, Eunhyek;Park, Kwanwoo;Yoon, Youngsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.23-28
    • /
    • 2019
  • This paper presents an optimal performance of rear wheel steering vehicle for maneuverability. The maneuverability of vehicle is evaluated in terms of yaw rate, body slip angle and driver input. The maneuverability of vehicle can be improved by rear wheel steering system. To obtain optimal performance of rear wheel steering vehicle, the optimal control history is designed. The high dimensional trajectory optimization problem is solved by formulating a quadratic program considering rear wheel steer input. To evaluate handling performance 7 degree-of-freedom vehicle model with actuation sub-models is designed. A step steer test is conducted to evaluate rear wheel steering vehicle. A response time, a TB factor, overshoot, and yaw rate gain are investigated through objective criteria, assessment webs. The handling performance of vehicle is evaluated via computer simulations. It has been shown from simulation studies that optimal controlled rear wheel steering vehicle provides improved performance compared to others.