• 제목/요약/키워드: Safety wheel

검색결과 444건 처리시간 0.02초

차륜의 찰상결함 진단을 위한 켑스트럼 분석 방법 연구 (A Study on Cepstrum Analysis for Wheel Flat Detection in Railway Vehicles)

  • 김거영;김현태;구정서
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.28-33
    • /
    • 2016
  • Since defects in the wheels of railway vehicles, which occur due to wears with the rail, cause serious damage to the running device, the diagnostic monitoring system for condition-based maintenance is required to secure the driving safety. In this paper, we studied to apply a useful Cepstrum analysis to detect periodic structure in spectrum among the vibration signal processing techniques for the fault diagnosis of a rotating body such as wheel. In order to analyze in variations of train velocity, the Cepstrum analysis was performed after a domain change of the vibration signal from time domain to rotation angle domain. When domains change, it is important to use a interpolation for a uniform interval of the rotation angle. Finally, the Cepstrum analysis for wheel flat detection was verified by using the vibration signal including the disturbance resulting from the rail irregularities and the vibration of bogie components.

곡선부 통과 열차의 주행안전성 평가에 관한 연구 (A Study on the Assessment of Running Safety of Railway Vehicle passing through Curve)

  • 박광수;이희성
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.492-498
    • /
    • 2007
  • 곡선통과 새마을호 열차의 주행안전성을 평가하기 위하여 다물체동력학 해석모델이 사용된다. 이 모델과 ADAMS/Rail 사용하여 탈선계수와 관련된 변수의 변화에 따른 민감도해석이 수행된다. 저속에서 우측차륜의 탈선계수와 윤중감소율이 좌측차륜보다 높으나, 고속의 경우는 좌측차륜이 우측차륜보다 높다. 곡선반경의 감소에 따라 탈선계수와 윤중감소율이 감소된다. 완화곡선의 길이가 증가하면 탈선계수는 증가하나 윤중감소율은 변화가 없다. 캔트가 증가하면 탈선계수와 윤중감소율이 증가한다.

기존선에서 가설교량 시공에 따른 열차의 주행안전성 평가 (Evaluation of Train Running Safety During Construction of Temporary Bridge on Existing Railway)

  • 엄기영;배재형;최찬용
    • 한국철도학회논문집
    • /
    • 제14권3호
    • /
    • pp.234-239
    • /
    • 2011
  • 선로하부를 굴착한 후의 가설교량 설치공법은 이동형 가로보를 갖는 공법으로 시공시 전차선 차단 및 레일절단이 불필요하고 열차운행 횟수가 많은 복선부에서도 적용 가능한 공법이다. 본 논문에서는 공사구간이 곡선부(R400)구간으로 가설교량 공법 시공 후의 변위특성을 검토하기 위해 변위계를 설치하고 열차 통과 시의 윤중 횡압을 계측하여 곡선부(R400)의 주행안전성 검토를 평가하였다. 측정결과 가설교량을 통과시 열차종별 윤중과 횡압의 최대값은 각각 국외 궤도성능평가 기준의 51%, 81% 수준으로 분석되어 윤중, 횡압 발생에 따른 궤도 안전성 측면에서는 큰 문제가 없을 것으로 판단된다. 또한 주행안전성의 평가기준이 되는 최대 탈선계수와 최대 윤중감소율은 열차종별에 관계없이 허용한계치의 49% 수준으로 그 기준치에는 못 미치는 것으로 나타나 열차 통과시의 주행안전성 확보에는 큰 문제가 없는 것을 알 수 있었다.

차륜에 대한 열손상 평가 (Evaluation of Thermal Dmage for Railway Weel)

  • 권석진;서정원;이동형;김영규;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.966-970
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

  • PDF

굴삭기휠의 형상별 구조 강도에 대한 내구성 연구 (Durability Study on Structural Strength due to the Shape of Excavator Wheel)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

임계위치에서의 고속철도용 윤축의 파괴인성 (Fracture Toughness of Wheelset for High Speed Train on the Critical Locations)

  • 권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.865-871
    • /
    • 2004
  • The safety evaluations of railway wheel sets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheel set materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheel set for high-speed trains, because the load state for each location of the wheel set while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

  • PDF

차륜답면 형상변화에 따른 KTX의 동특성 (Effects of Wheel Profile on KTX Dynamic Characteristics)

  • 장종기;이승일;최연선
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.259-263
    • /
    • 2004
  • The running safety of a railway vehicle depends on the design parameters and contact condition between wheel and rail. In this study, the effect of the conicity of wheel tread is analyzed using ADAMS/RAIL software on running situation. Modal analysis shows in 0.6 Hz natural frequency of lateral mode in fully arranged the KTX cars. The excessive vibration of the tail cars occurs in the 17th car as the speed and the stiffness of the secondary suspension increases, and especially for 1/40 conicity of the GV40 wheel. Also, the analysis shows that combination of wheel profile, GV40 for power cars and XP55 for passenger cars can reduce the lateral vibration of the tail cars.

도로함몰 현상 대응을 위한 전략과제 도출 (Deriving Strategic Agenda for Response of Road Sink Phenomenon)

  • 성주현;박원주;이종건;최병일
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.99-104
    • /
    • 2016
  • Road Sink Phenomenon (RSP) is one of the major issues in South Korea. National and local governments are trying to develop effective preventive measures against the RSP. Developing the policy-oriented RSP management is most important to minimize possible losses induced by RSP. In this study, we employed the Futures Wheel (FW) method to derive influence factors for RSP management. FW method is widely used for predicting future social-environmental condition. In addition, RAND Corporation's method is used to derive potential strategic agenda based on derived influence factors by FW method. These derived strategic agenda can contribute to develop the policies related with RSP management.

후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소 (Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor)

  • 김태현;황대규;김봉상;이성희;문희창
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.