• Title/Summary/Keyword: Safety wheel

Search Result 444, Processing Time 0.031 seconds

An analysis of material test results for rolling-stock wheel (철도차량용 차륜재 물성시험 분석 연구)

  • Hur Hyun-Moo;Kwon Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.601-605
    • /
    • 2004
  • Railway wheel is the important element of rolling-stock in the viewpoint of running safety. Thus, the material properties of strength, fatigue crack, durability are needed, and the standards for test and criteria of whee] are established to guarantee quality of wheel. In the meantime, the suppliers for wheel in domestic are varied from domestic monopolization to diverse company of China, Russia, Czech Republic, etc. The uniform quality of wheel is important from a maintenance point of view. We collected wheel samples of diverse vendors to analyze the uniformity of wheel on the basis of korea national standard. We tested material properties and analyzed the test data statistically.

  • PDF

Implementation of In-wheel Motor Driving System for Electric Vehicle (In-wheel 모터를 이용한 전기자동차 구동시스템의 구현)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

Evaluation of Train Running Safety During Construction of Temporary Bridge on Existing Railway (기존선에서 가설교량 시공에 따른 열차의 주행안전성 평가)

  • Eum, Ki-Young;Bae, Jae-Hyoung;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.234-239
    • /
    • 2011
  • Installing the temporary bridge after excavating the railway requires installing movable cross beam, but as it doesn't requires isolating the catenary or cutting the rail, it's applicable to double-track with frequent operation. In this study, a displacement meter was placed on temporary bridge to monitor the displacement pattern in curve section (R400) completed using temporary bridge method, and wheel load, lateral pressure and derailment coefficient were measured to evaluate the load imposed on track and the stability in curve section (R400) for quantitative evaluation of training running safety. As a result of the measurement, when trains passing over a temporary bridge, the maximum value of Wheel load and Lateral Force is analyzed as the 51% and 81% of standard level according to foreign country's performance tests, There is no trouble with stability analysis in Wheel load and Lateral Force occurring. Additionally, Wheel load and Lateral Force considered as the safety standard are tested 49% of limiting value regardless of trains, which the norm value quite well, there is no problem with train running.

Evaluation of Thermal Dmage for Railway Weel (차륜에 대한 열손상 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyong;Kim, Young-Kyu;Kim, Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.966-970
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

  • PDF

Durability Study on Structural Strength due to the Shape of Excavator Wheel (굴삭기휠의 형상별 구조 강도에 대한 내구성 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

Fracture Toughness of Wheelset for High Speed Train on the Critical Locations (임계위치에서의 고속철도용 윤축의 파괴인성)

  • Kwon Seok-Jin,
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.865-871
    • /
    • 2004
  • The safety evaluations of railway wheel sets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheel set materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheel set for high-speed trains, because the load state for each location of the wheel set while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

  • PDF

Effects of Wheel Profile on KTX Dynamic Characteristics (차륜답면 형상변화에 따른 KTX의 동특성)

  • 장종기;이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • The running safety of a railway vehicle depends on the design parameters and contact condition between wheel and rail. In this study, the effect of the conicity of wheel tread is analyzed using ADAMS/RAIL software on running situation. Modal analysis shows in 0.6 Hz natural frequency of lateral mode in fully arranged the KTX cars. The excessive vibration of the tail cars occurs in the 17th car as the speed and the stiffness of the secondary suspension increases, and especially for 1/40 conicity of the GV40 wheel. Also, the analysis shows that combination of wheel profile, GV40 for power cars and XP55 for passenger cars can reduce the lateral vibration of the tail cars.

Deriving Strategic Agenda for Response of Road Sink Phenomenon (도로함몰 현상 대응을 위한 전략과제 도출)

  • Seong, Joo Hyun;Park, Won Joo;Lee, Jong Gun;Choi, Byoung Il
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.99-104
    • /
    • 2016
  • Road Sink Phenomenon (RSP) is one of the major issues in South Korea. National and local governments are trying to develop effective preventive measures against the RSP. Developing the policy-oriented RSP management is most important to minimize possible losses induced by RSP. In this study, we employed the Futures Wheel (FW) method to derive influence factors for RSP management. FW method is widely used for predicting future social-environmental condition. In addition, RAND Corporation's method is used to derive potential strategic agenda based on derived influence factors by FW method. These derived strategic agenda can contribute to develop the policies related with RSP management.

Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor (후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소)

  • Taehyun Kim;Daekyu Hwang;Bongsang Kim;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.