• Title/Summary/Keyword: Safety of anchoring

Search Result 37, Processing Time 0.017 seconds

A Basic Study on the Demand Analysis of Waiting Anchorage using Anchorage Capacity Index (정박지 용량지수를 활용한 대기정박지 수요 분석에 대한 기초 연구)

  • Kwon, Seung-Cheol;Yu, Yong-Ung;Park, Jun-Mo;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.519-526
    • /
    • 2019
  • This study proposes a methodology for estimating the appropriate capacity of anchorage for ports requiring the establishment of waiting anchorage and then applying the methodology to the ports in Jinhae Bay to compare it with the anchorage capacity of major ports in Korea. To estimate the appropriate anchorage capacity, the "Anchorage Capacity Index" was used, which was calculated from the "Total Gross Tonnage" and "Simultaneous Anchoring Capacity". The calculations were made according to the anchorage capacity index of 0.89 of the target harbors. The adequate anchorage capacity index for the new waiting anchorage was analyzed at a level of 6.0. If the concept of anchorage capacity index suggested in this study is reflected as a new design criteria of waiting anchorage, it will be helpful for the safety of berth, safety of anchorage and effective operation of harbor.

Characteristics of Ship's Traffic Route in Yeosu·Gwangyang Port (여수·광양항 출입항로 통항 특성)

  • KIM, Dae-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.539-549
    • /
    • 2016
  • This study analyzed ship's passing characteristics in relation with incoming and outgoing routes in Yeosu Gwangyang Port, and examined the risk factors and measures for safety management of marine traffic. The number of passing ships in Yeosu Gwangyang Port was about 60,000 ships annually based on 2014, and the tonnage rose 73% from 447,000 thousand tons in 2005 to 770,000 thousand tons in 2014. Actually, the number of large passing ships was revealed to enormously increase. As a result of marine traffic survey in Yeosu Gwangyang Port for three days in August 2015, daily average passing ships were 408 ships, and 77% of the total passing ships passed between 04:00 and 20:00. The chemical ships and general cargo ships took up the most at 58% of the total incoming and outgoing ships, followed by other work ships at 21%, tankers at 8%, fishing vessels at 7.5% and container ships at 5.5%. Concerning the size of passing ships, ships less than 1,000 tons accounted for 58.6% of the total passing ships. Ships of 1,000-5,000 tons were 20.1%, and those of 5,000-10,000 tons were 6.8%, and more than 10,000 tons were 14.4%. Especially, ships of 500 tons and less using mainly coastal passing routes took up 49% of the total passing ships. As for ship's passage ratio by route, Nakpo sea area where many routes meet accounted for 27.2%, specified area 49%, costal route 8%, specified area's incoming and outgoing sea area around Daedo 4.5%, and Dolsan coastal ara and Kumhodo sea area 8.5%. The number of ships standing by for anchoring in the six designated anchorages was 230 for three days. The standby rate for anchoring was 25% based on the specified area passing ships. In Nakpo sea area, where many routes meet, parallel passing and cross passing between ships occurred the most frequently. In the specified area, many cases, in which incoming and outgoing cargo ships at the starting and ending parts and incoming and outgoing work ships and fishing vessels at the coastal routes cross, took place. Consequently, the following measures are urgently needed: active passing management in the Nakpo sea area, where passing routes are complex, specified areas and costal traffic routes, the elimination of rocks in the route close to Myodo, an effort to improve routes including shallow depth area dredging, and rational safety management for small work ships frequently incoming and outgoing the passing routes of large ships, and fishing vessels operated in the sea areas around those passing routes.

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Ship detection from satellite remote sensing is a crucial application for global monitoring for the purpose of protecting the marine environment and ensuring marine security. It permits to monitor sea traffic including fisheries, and to associate ships with oil discharge. An automatic ship detection approach for RADARSAT Fine Synthetic Aperture Radar (SAR) image is described and assessed using in situ ship validation information collected during field experiments conducted on August 6, 2004. Ship detection algorithms developed here consist of five stages: calibration, land masking, prescreening, point positioning, and discrimination. The fine image was acquired of Ulsan Port, located in southeast Korea, and during the acquisition, wind speeds between 0 m/s and 0.4 m/s were reported. The detection approach is applied to anchoring ships in the anchorage area of the port and its results are compared with validation data based on Vessel Traffic Service (VTS) radar. Our analysis for anchoring ships, above 68 m in length (LOA), indicates a 100% ship detection rate for the RADARSAT single beam mode. It is shown that the ship detection performance of SAR for smaller ships like barge could be higher than the land-based radar. The proposed method is also applied to estimate the ship's dimensions of length and breadth from SAR radar cross section(RCS), but those values were comparatively higher than the actual sizes because of layover and shadow effects of SAR.

  • PDF

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Improvement Plans for Anchorage at Yeosu·Kwangyang Port (여수·광양항 정박지 개선방안에 관한 연구)

  • Lee, Hong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • Relocation and expansion of existing port facilities are necessary given this increase in marine traffic volume and the presence of larger entering vessels. Therefore, this study focused on anchorage among water facilities, and examined the degree of harmony between anchorage and other water facilities at Yeosu Kwangyang Port. The number of anchoring vessels in relation to anchorage over the past 5 years, total anchored hours by anchorage-years, average number of simultaneously anchored vessels by anchorage-years, maximum number of simultaneously anchored vessels by anchorage, and maximum size of anchored vessels by anchorage have been surveyed. The minimum anchorage radius has been calculated according to the designated anchorage capacity according to anchorage. Finally, improvement plans for Yeosu Kwangyang Port's anchorage have been suggested, including relocating of Yeosu no. 2 anchorage, expanding of Kwangyang no. 1 ~ 5 anchorage, relocating of Kwangyang no. 8 ~ 9 anchorage, and repealing of Kwangyang no. 11 anchorage.

A Study for the Evaluation of the Force by the Wind on the Ship at Anchoring (실선계측을 통한 묘박중인 선박의 풍압력 적용에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • By the typhoon "MAEMI" in 2003, a lot of marine accidents such as stranding, collision etc. occurred to the vessels at anchor in "JINHAE MAN" which was considered one of the most safe sheltering anchorage in Korea. These accidents resulted from the dragging of anchor by the strong winds. It needs to compare the external forces with the holding powers of anchors to estimate if the anchor will be dragged or not. However, the calculation of the force by the wind on the ship, in particular, on the wind pressure area which changes by the swinging of her bow is not yet set on a thesis. Therefore, this paper verified that how many times the front wind pressure area should be applied to calculate the force by the wind on the ship at anchor by comparing and analyzing the numerical calculation with, the actual ship's data which was really dragged by the strong wind.

  • PDF

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

Minimum Wind Speed of Dragging Anchor for Ships in Jinhae Bay Typhoon Refuge (진해만 태풍 피항 선박의 주묘 한계 풍속에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Park, Young-Soo;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.474-482
    • /
    • 2021
  • An average of two to three typhoons that occur in the Philippines or Taiwan pass through Korea each year owing to the influence of the geographical location and western winds. Because Jinhae Bay is known as Korea's representative typhoon refuge, it is filled with ships during typhoons and later becomes saturated with ships anchored to the surrounding routes. If a strong wind drags an anchored ship, a collision accident may occur because of the short distance between the ships. Therefore, a systematic anchoring safety management of Jinhae Bay is required. In this study, the minimum wind speeds of a dragging anchor based on the water depths of Jinhae Bay anchorages were investigated. When 7-9 shackles were given, the minimum wind speeds were 48-63, 46-61, and 39-54 knots at depths of 20, 35, and 50 m, respectively. As the water depth increased, the length of the cable laid on the sea bed became shorter than 5 m owing to the external force, and the minimum wind speed showed a significant difference of 4-8 knots. In addition, ships with high holding power anchors (AC-14 type) had higher minimum wind speeds than ships with conventional anchors (ASS type). Finally, it was confirmed that at a depth of 50 m, dragging easily occurred even when a high holding power anchor was applied.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.